In conjunction with bare metal single laser track validation experiments, a computational framework is proposed to accelerate the design and development of new additive manufacturing (AM) specific alloys. Specifically, Additive Manufacturing-Computational Fluid Dynamics (AM-CFD) and Calculation of Phase Diagram (CALPHAD), were combined to predict location-specific beta ->alpha phase transformation for a new Ti-Al-Fe-alloy. This modeling work was validated by rigorous spatially resolved synchrotron-based X-ray diffraction measurements. This framework reasonably predicts the melt pool and heat affected zone features in the experiment and reveals their significance in actual AM conditions. This framework can be applied for rapid and comprehensive evaluation of location-specific thermal history, phase, microstructure, and properties for new AM titanium alloy development.