Change search
Refine search result
1 - 2 of 2
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1. Borges, Fabio
    et al.
    Martucci, Leonardo
    Karlstad University, Faculty of Health, Science and Technology (starting 2013), Department of Mathematics and Computer Science (from 2013).
    iKUP keeps users' privacy in the Smart Grid2014In: Communications and Network Security (CNS), 2014 IEEE Conference on, IEEE conference proceedings, 2014, p. 310-318Conference paper (Refereed)
    Abstract [en]

    Privacy-enhancing technologies for the Smart Grid usually address either the consolidation of users’ energy consumption or the verification of billing information. The goal of this paper is to introduce iKUP, a protocol that addresses both problems simultaneously. iKUP is an efficient privacy-enhancingprotocol based on DC-Nets and Elliptic Curve Cryptography as Commitment. It covers the entire cycle of power provisioning, consumption, billing, and verification. iKUP allows: (i) utility providers to obtain a consolidated energy consumption value that relates to the consumption of a user set, (ii) utility providers to verify the correctness of this consolidated value, and (iii) the verification of the correctness of the billing information by both utility providers and users. iKUP prevents utility providers from identifying individual contributions to the consolidated value and, therefore, protects the users’ privacy. The analytical performance evaluation of iKUP is validated through simulation using as input a real-world data set with over 157 million measurements collected from 6,345 smart meters. Our results show that iKUP has a worse performance than other protocols in aggregationand decryption, which are operations that happen only once per round of measurements and, thus, have a low impactin the total protocol performance. iKUP heavily outperformsother protocols in encryption, which is the most demanded cryptographic function, has the highest impact on the overall protocol performance, and it is executed in the smart meters.

  • 2. Borges, Fábio
    et al.
    Martucci, Leonardo
    Karlstad University, Faculty of Health, Science and Technology (starting 2013), Department of Mathematics and Computer Science.
    Beato, Filipe
    Mühlhäuser, Max
    Secure and Privacy-Friendly Public Key Generation and Certification2014In: 2014 IEEE 13th International Conference on Trust, Security and Privacy in Computing and Communications, New York: IEEE Press, 2014, p. 114-121Conference paper (Refereed)
    Abstract [en]

    Digital societies increasingly rely on secure communication between parties. Certificate enrollment protocols are used by certificate authorities to issue public key certificates to clients. Key agreement protocols, such as Diffie-Hellman, are used to compute secret keys, using public keys as input, for establishing secure communication channels. Whenever the keys are generated by clients, the bootstrap process requires either (a) an out-of-band verification for certification of keys when those are generated by the clients themselves, or (b) a trusted server to generate both the public and secret parameters. This paper presents a novel constrained key agreement protocol, built upon a constrained Diffie-Hellman, which is used to generate a secure public-private key pair, and to set up a certification environment without disclosing the private keys. In this way, the servers can guarantee that the generated key parameters are safe, and the clients do not disclose any secret information to the servers.

1 - 2 of 2
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf