Change search
Refine search result
1 - 10 of 10
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Gåård, Anders
    et al.
    Karlstad University, Faculty of Technology and Science, Materials Science. Karlstad University, Faculty of Technology and Science, Department of Mechanical and Materials Engineering.
    Hirvonen Grytzelius, Joakim
    Karlstad University, Faculty of Technology and Science, Department of Physics and Electrical Engineering.
    Krakhmalev, Pavel
    Karlstad University, Faculty of Technology and Science, Materials Science. Karlstad University, Faculty of Technology and Science, Department of Mechanical and Materials Engineering.
    Zhang, Hanmin
    Karlstad University, Faculty of Technology and Science, Department of Physics and Electrical Engineering.
    Bergström, Jens
    Karlstad University, Faculty of Technology and Science, Department of Mechanical and Materials Engineering. Karlstad University, Faculty of Technology and Science, Materials Science.
    Experimental study of the relationship between temperature and adhesive forces for low-alloyed steel, stainless steel and titanium using atomic force microscopy in ultra-high vacuum2008In: Journal of Applied Physics, ISSN 0021-8979, E-ISSN 1089-7550, ISSN 0021-8979, Vol. 103, no 12, article id 124301Article in journal (Refereed)
  • 2.
    Hirvonen Grytzelius, Joakim
    Karlstad University, Faculty of Technology and Science, Department of Physics and Electrical Engineering.
    Thin Mn silicide and germanide layers studied by photoemission and STM2012Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    The research presented in this thesis concerns experimental studies of thin manganese silicide and germanide layers, grown by solid phase epitaxy on the Si(111)7×7 and the Ge(111)c(2×8) surfaces, respectively. The atomic and electronic structures, as well as growth modes of the epitaxial Mn-Si and Mn-Ge layers, were investigated by low-energy electron diffraction (LEED), angle-resolved photoelectron spectroscopy (ARPES), core-level spectroscopy (CLS), and scanning tunneling microscopy and spectroscopy (STM and STS). The magnetic properties of the Mn-Ge films were investigated by X-ray magnetic circular dichroism (XMCD).

    The Mn-Si layers, annealed at 400 °C, showed a √3×√3 LEED pattern, consistent with the formation of the stoichiometric monosilicide MnSi. Up to 4 monolayers (ML) of Mn coverage, island formation was observed. For higher Mn coverages, uniform film growth was found. Our results concerning morphology and the atomic and electronic structure of the Mn/Si(111)-√3×√3 surface, are in good agreement with a recent theoretical model for a layered MnSi structure and the √3×√3 surface structure.

    Similar to the Mn-Si case, the grown Mn-Ge films, annealed at 330 °C and 450 °C, showed a √3×√3 LEED pattern. This indicated the formation of the ordered Mn5Ge3 germanide. A strong tendency to island formation was observed for the Mn5Ge3 films, and a Mn coverage of about 32 ML was needed to obtain a continuous film. Our STM and CLS results are in good agreement with the established model for the bulk Mn5Ge3 germanide, with a surface termination of Mn atoms arranged in a honeycomb pattern. Mn-Ge films grown at a lower annealing temperature, 260 °C, showed a continuous film at lower coverages, with a film structure that is different compared to the structure of the Mn5Ge3 film. XMCD studies showed that the low-temperature films are ferromagnetic for 16 ML Mn coverage and above, with a Curie temperature of ~250 K.

    Download full text (pdf)
    fulltext
  • 3.
    Hirvonen Grytzelius, Joakim
    et al.
    Karlstad University, Faculty of Technology and Science, Department of Physics and Electrical Engineering.
    Zhang, Hanmin
    Karlstad University, Faculty of Technology and Science, Department of Physics and Electrical Engineering.
    Johansson, Lars
    Karlstad University, Faculty of Technology and Science, Department of Physics and Electrical Engineering.
    Core-level spectroscopy studies of Mn/Si(111)-sqrt3xsqrt32008Conference paper (Refereed)
  • 4.
    Hirvonen Grytzelius, Joakim
    et al.
    Karlstad University, Faculty of Technology and Science, Department of Physics and Electrical Engineering.
    Zhang, Hanmin
    Karlstad University, Faculty of Technology and Science, Department of Physics and Electrical Engineering.
    Johansson, Lars
    Karlstad University, Faculty of Technology and Science, Department of Physics and Electrical Engineering.
    Coverage dependence and surface atomic structure of Mn/Si(111)-√3×√3 studied by scanning tunneling microscopy and spectroscopy2009In: Physical Review B. Condensed Matter and Materials Physics, ISSN 1098-0121, E-ISSN 1550-235X, Vol. 80, p. 235324-1-235324-6Article in journal (Refereed)
    Abstract [en]

    Thin manganese silicide films of different thicknesses on Si(111) have been studied in detail by low-energy electron diffraction (LEED), scanning tunneling microscopy, and scanning tunneling spectroscopy (STM/STS). Up to a Mn coverage of 3–4 monolayers (ML), island formation is favored. For higher Mn coverages up to 12 ML uniform film growth is found. The silicide film morphology at low coverages supports a layered Mn-Si film structure. The silicide surfaces displayed a √3×√3 LEED pattern. STM images recorded from the √3×√3 surfaces mostly show a hexagonal pattern but a honeycomb pattern has also been observed. A surface atomic structure based on chained Mn triangles is proposed. Our STM results are in good agreement with a recent theoretical model. The high-quality STS spectra recorded from the different surfaces show a clear metallic character at 1.5 ML and higher coverages. The filled-state features in the STS spectra at surfaces with 3–4 ML Mn coverages are similar to earlier published angle-resolved photoelectron spectroscopy data.

  • 5.
    Hirvonen Grytzelius, Joakim
    et al.
    Karlstad University, Faculty of Technology and Science, Department of Physics and Electrical Engineering. Karlstad University, Faculty of Technology and Science, Materials Science.
    Zhang, Hanmin
    Karlstad University, Faculty of Technology and Science, Department of Physics and Electrical Engineering.
    Johansson, Lars
    Karlstad University, Faculty of Technology and Science, Department of Physics and Electrical Engineering.
    Electronic structure of Mn/Si(111)-sqrt3xsqrt32007Conference paper (Refereed)
  • 6.
    Hirvonen Grytzelius, Joakim
    et al.
    Karlstad University, Faculty of Technology and Science, Department of Physics and Electrical Engineering. Karlstad University, Faculty of Technology and Science, Materials Science.
    Zhang, Hanmin
    Karlstad University, Faculty of Technology and Science, Department of Physics and Electrical Engineering.
    Johansson, Lars
    Karlstad University, Faculty of Technology and Science, Department of Physics and Electrical Engineering.
    Mn5Ge3 film formation on Ge(111)c(2×8)2012In: Physical Review B. Condensed Matter and Materials Physics, ISSN 1098-0121, E-ISSN 1550-235X, Vol. 86, no 12, p. 125313-1-125313-7Article in journal (Refereed)
    Abstract [en]

    Thin manganese germanide films with different thicknesses on Ge(111) have been studied in detail by low-energy electron diffraction (LEED), scanning tunneling microscopy, and core-level spectroscopy (CLS). Annealing of the deposited Mn on Ge(111)c(2×8) between 330-450 C resulted in well-ordered Mn5Ge3 surfaces as seen by intense 3×3 LEED spots. Up to a coverage of 24 monolayers (ML), island formation is favored. At a coverage of 32 ML a well ordered Mn5Ge3 film was found to fully cover the surface. High-resolution Ge 3d CLS spectra were recorded with photon energies between 50 and 110 eV at normal and 60 emission angles. In contrast to earlier results, three components have been used in the line-shape analysis to achieve a consistent fit over the energy and angular range. In addition, three components have been identified for the Mn 2p CLS spectra. The two major components fit well with a layered Mn germanide structure suggested in the literature.

  • 7.
    Hirvonen Grytzelius, Joakim
    et al.
    Karlstad University, Faculty of Technology and Science, Department of Physics and Electrical Engineering.
    Zhang, Hanmin
    Karlstad University, Faculty of Technology and Science, Department of Physics and Electrical Engineering.
    Johansson, Lars
    Karlstad University, Faculty of Technology and Science, Department of Physics and Electrical Engineering.
    Surface atomic and electronic structure of Mn5Ge3 on Ge(111)2011In: Physical Review B. Condensed Matter and Materials Physics, ISSN 1098-0121, E-ISSN 1550-235X, ISSN 1098-0121, Vol. 84, no 19, p. 195306-1-195306-6Article in journal (Refereed)
    Abstract [en]

    The atomic and electronic structure of the Mn5Ge3(001) surface grown on Ge(111) c(2×8) has been studied in detail by angle-resolved photoelectron spectroscopy (ARPES), scanning tunneling microscopy (STM), and scanning tunneling spectroscopy. ARPES spectra recorded from the Γ̅ -K̅ -M̅ and Γ̅ -M̅ -Γ̅ directions of the surface Brillouin zone show six surface-related features. The STM images recorded at biases higher/lower than ±0.4 V always show a honeycomb pattern with two bright protrusions in each unit cell. At lower biases, a hexagonal, intermediate transition, and a honeycomb pattern are observed. These can be explained as arising from Mn and Ge atoms in the sublayer arranged in triangular structures and Mn atoms in the top layer arranged in a honeycomb structure, respectively. The photoemission and STM data from the germanide surface are discussed and compared to earlier published theoretical, photoelectron spectroscopy, and scanning tunneling microscopy studies.

  • 8.
    Hirvonen Grytzelius, Joakim
    et al.
    Karlstad University, Faculty of Technology and Science, Department of Physics and Electrical Engineering.
    Zhang, Hanmin
    Karlstad University, Faculty of Technology and Science, Department of Physics and Electrical Engineering.
    Johansson, Lars
    Karlstad University, Faculty of Technology and Science, Department of Physics and Electrical Engineering.
    Surface electronic structure of Mn/Si(111)-√3×√32008In: Physical Review B. Condensed Matter and Materials Physics, ISSN 1098-0121, E-ISSN 1550-235X, Vol. 78, no 15, p. 155406-1-155406-6Article in journal (Refereed)
    Abstract [en]

    The Mn/Si(111)-√3×√3 surface has been studied in detail by low energy electron diffraction (LEED), angle-resolved photoelectron spectroscopy (ARPES), and core-level photoelectron spectroscopy (CLS). Annealing of the deposited manganese resulted in a well-ordered surface as seen by intense √3×√3 LEED spots. ARPES spectra recorded in the Γ̅ -K̅ -M̅ direction of the √3×√3 surface Brillouin zone show five surface related features in the band gap while in the Γ̅ -M̅ -Γ̅ direction four surface features are observed. The high-resolution Si 2p CLS data were recorded at photon energies between 108–140 eV both at normal and 60° emission angle. The bulk component was identified from the bulk sensitive spectrum recorded at a photon energy of 108 eV. To achieve a consistent core-level fitting over the whole energy and angular range, five components were introduced in the line-shape analysis. The photoemission data from the √3×√3 surface have been discussed and compared with a recent theoretical model. The findings here support a layered Mn silicide film structure.

  • 9.
    Zhang, Hanmin
    et al.
    Karlstad University, Faculty of Technology and Science, Department of Physics and Electrical Engineering.
    Hirvonen Grytzelius, Joakim
    Karlstad University, Faculty of Technology and Science, Department of Physics and Electrical Engineering.
    Johansson, Lars
    Karlstad University, Faculty of Technology and Science, Department of Physics and Electrical Engineering.
    Electronic structure of Mn/Ge(111)-√3×√3 thin films studied by photoelectron spectroscopy2009Conference paper (Refereed)
  • 10.
    Zhang, Hanmin
    et al.
    Karlstad University, Faculty of Health, Science and Technology (starting 2013), Department of Engineering and Physics.
    Hirvonen Grytzelius, Joakim
    Karlstad University, Faculty of Health, Science and Technology (starting 2013), Department of Engineering and Physics.
    Johansson, Lars
    Karlstad University, Faculty of Health, Science and Technology (starting 2013), Department of Engineering and Physics.
    Thin Mn germanide films studied with XPS, STM, and XMCD2013In: Physical Review B. Condensed Matter and Materials Physics, ISSN 1098-0121, E-ISSN 1550-235X, Vol. 88, no 4, p. 045311-1-045311-6Article in journal (Refereed)
    Abstract [en]

    Thin Mn germanide films with nanoscale thicknesses on Ge(111) have been studied by low-energy electron diffraction (LEED), scanning tunneling microscopy (STM), core-level spectroscopy (CLS), and x-ray magnetic circular dichroism. The 260 C annealing of 16 monolayers of Mn deposited on Ge(111)c(2×8) resulted in a uniform film with intense threefold split √3×√3 LEED spots and Moiré patterns in the STM images. This ultrathin film shows a clear ferromagnetism with a Curie temperature of ∼250 K. High-resolution Ge 3d CLS spectra were recorded with photon energies between 50 and 90 eV at normal and 60 emission angle. To achieve a consistent fit over the energy and angular range three components were used in the line-shape analysis. The low temperature (260 C) annealed film shows significant differences in terms of electronic structure and magnetism in contrast to the high temperature (330 C or above) annealed ones. Our results indicate that the annealing temperature and the Mn coverage play important roles in the formation of a thin magnetic Mn germanide film.

1 - 10 of 10
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf