Endre søk
Begrens søket
1 - 3 of 3
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Treff pr side
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
Merk
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1.
    Lafage, Denis
    et al.
    France.
    Sibelle, Charlotte
    Université d'Angers, France.
    Secondi, Jean
    Université d'Angers, France.
    Canard, Alain
    Université de Rennes 1, France.
    Petillon, Julien
    Université de Rennes 1, France.
    Short-term resilience of arthropod assemblages after spring flood, with focus on spiders (Arachnida Araneae) and carabids (Coleoptera: Carabidae)2015Inngår i: Ecohydrology, ISSN 1936-0584, E-ISSN 1936-0592, Vol. 8, nr 8, s. 1584-1599Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Despite the expected increase in extreme flood frequency, the manner in which terrestrial arthropods cope with regular submersion of their habitat remains poorly understood in meadows, especially in temperate floodplains. Here, we studied the recolonization dynamics of arthropods after a severe spring flood in the Loire Valley (France). We carried out analyses at the community (order or family identification level) and species scales, focusing on the assemblages of two dominant and diverse groups: carabids and spiders. Our objectives were the following: (i) to describe the temporal changes in community structure after flooding and (ii) to assess the influence of landscape configuration on recolonization patterns of species and their functional traits. Fieldwork was performed along three sampling transects, by using 75 pitfall traps, in 2012. A total of 14767 arthropods belonging to 87 families were trapped, including 5538 spiders (55 species) and 3396 carabids (66 species). Multivariate analyses discriminated assemblages from flooded and non-flooded habitats and revealed changes over time in arthropod families and species after flood withdrawal. In particular, wolf spiders (Lycosidae) were the first to recolonize, whereas other groups clearly avoided flooded sites. Our results also revealed that short distances to hedgerows, and to a lesser extent, distance to woodlands, favoured the recolonization of large and ground-running spiders. In conclusion, our study shows the short-term resilience of certain groups or stenotopic species to flooding and also the relevance of multi-taxon-based studies. The presence of hedgerows has to be considered carefully in management plans because of their role of refuge during flooding. Copyright (c) 2015 John Wiley & Sons, Ltd.

  • 2.
    Nilsson, Christer
    et al.
    Umeå University, Umeå, Sweden.
    Polvi, Lina E
    Umeå University, Umeå, Sweden.
    Gardeström, Johanna
    Umeå University, Umeå, Sweden.
    Maher Hasselquist, Eliza
    Umeå University, Umeå, Sweden.
    Lind, Lovisa
    Umeå University, Umeå, Sweden.
    Sarneel, Judith M
    Umeå University, Umeå, Sweden.
    Riparian and in-stream restoration of boreal streams and rivers: success or failure?2015Inngår i: Ecohydrology, ISSN 1936-0584, E-ISSN 1936-0592, Vol. 8, nr 5, s. 753-764Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    We reviewed follow-up studies from Finnish and Swedish streams that have been restored after timber floating to assess the abiotic and biotic responses to restoration. More specifically, from a review of 18 case studies (16 published and 2 unpublished), we determined whether different taxonomic groups react differently or require different periods of time to respond to the same type of restoration. Restoration entailed returning coarse sediment (cobbles and boulders) and sometimes large wood to previously channelized turbulent reaches, primarily with the objective of meeting habitat requirements of naturally reproducing salmonid fish. The restored streams showed a consistent increase in channel complexity and retention capacity, but the biotic responses were weak or absent in most species groups. Aquatic mosses growing on boulders were drastically reduced shortly after restoration, but in most studies, they recovered after a few years. Riparian plants, macroinvertebrates and fish did not show any consistent trends in response. We discuss seven alternative explanations to these inconsistent results and conclude that two decades is probably too short a time for most organisms to recover. We recommend long-term monitoring using standardized methods, a landscape-scale perspective and a wider range of organisms to improve the basis for judging to what extent restoration in boreal streams has achieved its goal of reducing the impacts from timber floating.

  • 3.
    Su, X.
    et al.
    Southwest University, Chongqing, China.
    Lind, L.
    Umå universitet.
    Polvi, L. E.
    Umeå universitet.
    Nilsson, C.
    Karlstads universitet, Fakulteten för hälsa, natur- och teknikvetenskap (from 2013), Institutionen för miljö- och livsvetenskaper (from 2013).
    Variation in hydrochory among lakes and streams: Effects of channel planform, roughness, and currents2019Inngår i: Ecohydrology, ISSN 1936-0584, E-ISSN 1936-0592, artikkel-id e2091Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The configuration of channels in stream networks is vital for their connectivity, biodiversity, and metacommunity dynamics. We compared the capacity of three process domains—lakes, slow-flowing reaches, and rapids—to disperse and retain plant propagules by releasing small wooden cubes as propagule mimics during the spring flood and recording their final locations. We also measured the geomorphic characteristics (planform, longitudinal profile, cross-sectional morphology, and wood) of each process domain. The three process domains all differed in morphology and hydraulics, and those characteristics were important in shaping the transport capacity of mimics. On average, lakes retained more mimics than slow-flowing reaches but did not differ from the retainment of rapids. Living macrophytes were the most efficient element trapping mimics. In rapids and slow-flowing reaches, most trapped mimics remained floating, whereas in lakes, most mimics ended up on the banks. The decay curves of retention varied substantially among and within process domains. The results suggest that managers who rely on natural recovery of restored sites by means of plant immigration may benefit from understanding landscape patterns when deciding upon the location of restoration measures in stream networks.

1 - 3 of 3
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf