Change search
Refine search result
1 - 8 of 8
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Bozakov, Zdravko
    et al.
    Dell EMC, Ireland.
    Mangiante, Simone
    Dell EMC, Ireland.
    Hernandez Benet, Cristian
    Karlstad University, Faculty of Health, Science and Technology (starting 2013), Department of Mathematics and Computer Science (from 2013).
    Brunström, Anna
    Karlstad University, Faculty of Health, Science and Technology (starting 2013), Department of Mathematics and Computer Science (from 2013). Karlstad University, Faculty of Economic Sciences, Communication and IT, Centre for HumanIT.
    Santos, Ricardo
    Karlstad University, Faculty of Health, Science and Technology (starting 2013), Department of Mathematics and Computer Science (from 2013).
    Kassler, Andreas
    Karlstad University, Faculty of Health, Science and Technology (starting 2013), Department of Mathematics and Computer Science (from 2013).
    Buckley, Donagh
    Dell EMC, Ireland.
    A NEAT framework for enhanced end-host integration in SDN environments2017In: 2017 IEEE Conference on Network Function Virtualization and Software Defined Networks (NFV-SDN), IEEE, 2017Conference paper (Refereed)
    Abstract [en]

    SDN aims to facilitate the management of increasingly complex, dynamic network environments and optimize the use of the resources available therein with minimal operator intervention. To this end, SDN controllers maintain a global view of the network topology and its state. However, the extraction of information about network flows and other network metrics remains a non-trivial challenge. Network applications exhibit a wide range of properties, posing diverse, often conflicting, demands towards the network. As these requirements are typically not known, controllers must rely on error-prone heuristics to extract them. In this work, we develop a framework which allows applications deployed in an SDN environment to explicitly express their requirements to the network. Conversely, it allows network controllers to deploy policies on end-hosts and to supply applications with information about network paths, salient servers and other relevant metrics. The proposed approach opens the door for fine grained, application-aware resource optimization strategies in SDNs

  • 2.
    Mesodiakaki, Agapi
    et al.
    Department of Informatics, Aristotle University of Thessaloniki, Greece.
    Zola, Enrica
    UPC-BarcelonaTECH, Barcelona, Spain.
    Santos, Ricardo
    Kassler, Andreas
    Optimal User Association, Backhaul Routing and Switching off in 5G Heterogeneous Networks with Mesh Millimeter Wave Backhaul Links2018In: Ad hoc networks, ISSN 1570-8705, E-ISSN 1570-8713, Vol. 78, p. 99-114Article in journal (Refereed)
    Abstract [en]

    Next generation, i.e., fifth generation (5G), cellular networks will provide a significant higher capacity per area to support the ever-increasing traffic demands. In order to achieve that, many small cells need to be deployed that are connected using a combination of optical fiber links and millimeter-wave (mmWave) backhaul architecture to forward heterogeneous traffic over mesh topologies. In this paper, we present a general optimization framework for the design of policies that optimally solve the problem of where to associate a user, over which links to route its traffic towards which mesh gateway, and which base stations and backhaul links to switch off in order to minimize the energy cost for the network operator and still satisfy the user demands. We develop an optimal policy based on mixed integer linear programming (MILP) which considers different user distribution and traffic demands over multiple time periods. We develop also a fast iterative two-phase solution heuristic, which associates users and calculates backhaul routes to maximize energy savings. Our strategies optimize the backhaul network configuration at each timeslot based on the current demands and user locations. We discuss the application of our policies to backhaul management of mmWave cellular networks in light of current trend of network softwarization (Software-Defined Networking, SDN). Finally, we present extensive numerical simulations of our proposed policies, which show how the algorithms can efficiently trade-off energy consumption with required capacity, while satisfying flow demand requirements.

  • 3.
    Santos, Ricardo
    et al.
    Karlstad University, Faculty of Health, Science and Technology (starting 2013), Department of Mathematics and Computer Science (from 2013).
    Bozakov, Zdravko
    DELL EMC Research Europe, Ovens, Ireland.
    Mangiante, Simone
    DELL EMC Research Europe, Ovens, Ireland.
    Brunström, Anna
    Karlstad University, Faculty of Health, Science and Technology (starting 2013), Department of Mathematics and Computer Science (from 2013).
    Kassler, Andreas
    Karlstad University, Faculty of Health, Science and Technology (starting 2013), Department of Mathematics and Computer Science (from 2013).
    A NEAT framework for application-awareness in SDN environments2017In: 2017 IFIP Networking Conference (IFIP Networking) and Workshops, IEEE, 2017Conference paper (Refereed)
    Abstract [en]

    Software-Defined Networking (SDN) has led to a paradigm shift in the way how networks are managed and operated. In SDN environments the data plane forwarding rules are managed by logically centralized controllers operating on global view of the network. Today, SDN controllers typically posses little insight about the requirements of the applications executed on the end-hosts. Consequently, they rely on heuristics to implement traffic engineering or QoS support. In this work, we propose a framework for application-awareness in SDN environments where the end-hosts provide a generic interface for the SDN controllers to interact with. As a result, SDN controllers may enhance the end-host’s view of the attached network and deploy policies into the edge of the network. Further, controllers may obtain information about the specific requirements of the deployed applications. Our demonstration extends the OpenDaylight SDN controller to enable it to interact with end-hosts running a novel networking stack called NEAT. We demonstrate a scenario in which the controller distributes policies and path information to manage bulk and low-latency flows. 

  • 4.
    Santos, Ricardo
    et al.
    Karlstad University, Faculty of Health, Science and Technology (starting 2013), Department of Mathematics and Computer Science.
    Curadoo, Marilia
    Kassler, Andreas
    Karlstad University, Faculty of Economic Sciences, Communication and IT, Department of Computer Science. Karlstad University, Faculty of Economic Sciences, Communication and IT, Centre for HumanIT.
    Multipathing In Software Defined Networking: Interaction between SDN and MPTCP2015In: Proceedings of SWE-CTW 2015, May 27th – 29th, Karlstad, Sweden., 2015Conference paper (Refereed)
  • 5. Santos, Ricardo
    et al.
    Ghazzai, Hakim
    Kassler, Andreas
    Optimal Steerable mmWave Mesh Backhaul Reconfiguration2018Conference paper (Refereed)
    Abstract [en]

    Future 5G mobile networks will require increased backhaul (BH) capacity to connect a massive amount of high capacity small cells (SCs) to the network. Because having an optical connection to each SC might be infeasible, mmWave-based (e.g. 60 GHz) BH links are an interesting alternative due to their large available bandwidth. To cope with the increased path loss, mmWave links require directional antennas that should be able to direct their beams to different neighbors, to dynamically change the BH topology, in case new nodes are powered on/off or the traffic demand has changed. Such BH adaptation needs to be orchestrated to minimize the impact on existing traffic.This paper develops a Software-defined networking-based framework that guides the optimal reconfiguration of mesh BH networks composed by mmWave links, where antennas need to be mechanically aligned.By modelling the problem as a Mixed Integer Linear Program (MILP), its solution returns the optimal ordering of events necessary to transition between two BH network configurations. The model creates backup paths whenever it is possible, while minimizing the packet loss of ongoing flows. A numerical evaluation with different topologies and traffic demands shows that increasing the number of BH interfaces per SC from 2 to 4 can decrease the total loss by more than 50%. Moreover, when increasing the total reconfiguration time, additional backup paths can be created, consequently reducing the reconfiguration impact on existing traffic.

  • 6.
    Santos, Ricardo
    et al.
    Karlstad University, Faculty of Health, Science and Technology (starting 2013), Department of Mathematics and Computer Science.
    Kassler, Andreas
    Karlstad University, Faculty of Economic Sciences, Communication and IT, Centre for HumanIT. Karlstad University, Faculty of Health, Science and Technology (starting 2013), Department of Mathematics and Computer Science.
    A SDN Controller Architecture for Small Cell Wireless Backhaul using a LTE Control Channel2016In: Proceedings of the IEEE WoWMoM, IEEE Press, 2016Conference paper (Refereed)
  • 7.
    Santos, Ricardo
    et al.
    Karlstad University, Faculty of Health, Science and Technology (starting 2013), Department of Mathematics and Computer Science (from 2013).
    Kassler, Andreas
    Karlstad University, Faculty of Health, Science and Technology (starting 2013), Department of Mathematics and Computer Science (from 2013).
    Small Cell Wireless Backhaul Reconfiguration Using Software-Defined Networking2017In: Wireless Communications and Networking Conference (WCNC), 2017 IEEE, Institute of Electrical and Electronics Engineers (IEEE), 2017Conference paper (Refereed)
    Abstract [en]

    In order to increase the capacity of next generation mobile networks, network densification is a key aspect to provide better coverage and increased data rates to end users. Network operators are thinking to deploy wireless backhaul solutions to cut down cabling costs for connecting the small cell nodes. Consequently, the next generation mobile network architecture may contain a massive amount of small cells that are connected through wireless backhaul links, forming mesh or tree structures towards the core network, under the umbrella coverage of eNodeB type macro cells. In this paper, we use a Software-Defined Networking (SDN) based architecture for the operation and management of such small cell backhaul networks. By extending OpenFlow, the SDN controller is able to reconfigure not only the routing, but also the wireless backhaul configuration, such as channel assignment to backhaul links. We demonstrate the effectiveness of our approach by using testbed measurements and show that, when using our SDN-based reconfiguration, the network downtime for existing traffic due to channel re-assignment is significantly reduced, when comparing to a distributed routing based approach. Moreover, by using SDN based fast-failover techniques, we can instantaneously redirect traffic to other neighbors when links fail or neighbors are powered down, without the need for controller interaction.

  • 8.
    Santos, Ricardo
    et al.
    Karlstad University, Faculty of Health, Science and Technology (starting 2013), Department of Mathematics and Computer Science (from 2013).
    Ogawa, Hiroaki
    Tokyo Institute of Technology.
    Khanh Tran, Gia
    Tokyo Institute of Technology.
    Sakaguchi, Kei
    Tokyo Institute of Technology.
    Kassler, Andreas
    Karlstad University, Faculty of Health, Science and Technology (starting 2013), Department of Mathematics and Computer Science (from 2013). Karlstad University, Faculty of Economic Sciences, Communication and IT, Department of Computer Science. Karlstad University, Faculty of Economic Sciences, Communication and IT, Centre for HumanIT.
    Turning the knobs on OpenFlow-based resiliency in mmWave small cell meshed networks2017In: Globecom Workshops (GC Wkshps), 2017 IEEE: 5G Testbed, IEEE, 2017Conference paper (Refereed)
    Abstract [en]

    As a solution to cope with the increase of wireless network traffic for future 5G networks, the IEEE 802.11ad standard enables multi-gigabit connectivity within the 60 GHz spectrum. Since these networks typically have low range, a vast number of small cells is required to form a wireless backhaul that can be easily affected by temporary failures due to blockage/interference. Software-defined Networking (SDN) is a paradigm that allows the centralization of the control plane management, which can be applied to mmWave wireless backhaul networks. Using SDN enables the possibility of having resilience mechanisms in the network, such as Fast-Failover (FF) group tables in the OpenFlow (OF) protocol. In this paper, we analyse resilient forwarding configurations upon temporary link failures. We perform our evaluation on a 4 small cell testbed with multiple IEEE 802.11ad interfaces, showing how OF-based resiliency can be applied, through FF and the Bidirectional-Forwarding Detection (BFD) protocol. Our results show how BFD can be tuned to improve the link state monitoring, and how a local reactive failover mechanism can benefit ongoing traffic in small cell meshed backhaul networks.

1 - 8 of 8
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf