Change search
Refine search result
123 1 - 50 of 126
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • apa.csl
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1. Almotasem, Ahmed
    et al.
    Bergström, Jens
    Karlstad University, Faculty of Health, Science and Technology (starting 2013), Department of Engineering and Physics (from 2013).
    Gåård, Anders
    Karlstad University, Faculty of Health, Science and Technology (starting 2013), Department of Engineering and Physics (from 2013).
    Krakhmalev, Pavel
    Karlstad University, Faculty of Health, Science and Technology (starting 2013), Department of Engineering and Physics (from 2013).
    Holleboom, Thijs Jan
    Karlstad University, Faculty of Health, Science and Technology (starting 2013), Department of Engineering and Physics (from 2013).
    A molecular dynamic study on the influence of carbide particles in ferrite on material transfer during nanoscratching of ferritic iron2016In: Proceedings of the 10th International Tool Conference: TOOL, 10th International TOOL Conference : 04th to 07th October 2016, Bratislava, Slovakia / [ed] Simancik, Frantisek, 2016Conference paper (Refereed)
  • 2.
    AlMotasem, Ahmed Tamer
    et al.
    Karlstad University, Faculty of Health, Science and Technology (starting 2013), Department of Engineering and Physics (from 2013).
    Bergström, Jens
    Karlstad University, Faculty of Health, Science and Technology (starting 2013), Department of Engineering and Physics (from 2013).
    Gåård, Anders
    Karlstad University, Faculty of Health, Science and Technology (starting 2013), Department of Engineering and Physics (from 2013).
    Krakhmalev, Pavel
    Karlstad University, Faculty of Health, Science and Technology (starting 2013), Department of Engineering and Physics (from 2013).
    Holleboom, Thijs Jan
    Karlstad University, Faculty of Health, Science and Technology (starting 2013), Department of Engineering and Physics (from 2013).
    Adhesion between ferrite iron-€“iron/cementite countersurfaces: A molecular dynamics study2016In: Tribology International, ISSN 0301-679X, E-ISSN 1879-2464, Vol. 103, p. 113-120Article in journal (Refereed)
    Abstract [en]

    The adhesive properties of Fe(110)/Fe(110) and Fe3C(001)/Fe(110) countersurfaces have been investigated by using classical molecular dynamics simulations. The simulation results show that Fe3C/Fe exhibits a relatively lower adhesion compared to the Fe/Fe. Additionally, the temperature dependence of the adhesive properties between 300–700 K has been examined. The results demonstrate that, with increasing the temperature, the values of the adhesion force and the work of adhesion continuously decrease in the case of Fe3C/Fe; they initially slightly increase up to 500 K then decrease in the case of Fe/Fe. Furthermore, the effect of lattice coherency between Fe/Fe has been examined and found to slightly reduce the adhesion. These results explain how carbides improve galling resistance of tool steel observed during dry sliding. 

  • 3.
    AlMotasem, Ahmed Tamer
    et al.
    Karlstad University, Faculty of Health, Science and Technology (starting 2013), Department of Engineering and Physics (from 2013). Department of Physics, Faculty of ScienceAssiut University Assiut Egyp.
    Bergström, Jens
    Karlstad University, Faculty of Health, Science and Technology (starting 2013), Department of Engineering and Physics (from 2013).
    Gåård, Anders
    Karlstad University, Faculty of Health, Science and Technology (starting 2013), Department of Engineering and Physics (from 2013).
    Krakhmalev, Pavel
    Karlstad University, Faculty of Health, Science and Technology (starting 2013), Department of Engineering and Physics (from 2013), Science, Mathematics and Engineering Education Research.
    Holleboom, Thijs Jan
    Karlstad University, Faculty of Health, Science and Technology (starting 2013), Department of Engineering and Physics (from 2013).
    Atomistic insights on the wear/friction behavior of nanocrystalline ferrite during nanoscratching as revealed by molecular dynamics2017In: Tribology letters, ISSN 1023-8883, E-ISSN 1573-2711, Vol. 65, no 3, p. 101-Article in journal (Refereed)
    Abstract [en]

    Using embedded atom method potential, extensive large-scale molecular dynamics (MD) simulations of nanoindentation/nanoscratching of nanocrystalline (nc) iron have been carried out to explore grain size dependence of wear response. MD results show no clear dependence of the frictional and normal forces on the grain size, and the single-crystal (sc) iron has higher frictional and normal force compared to nc-samples. For all samples, the dislocation- mediated mechanism is the primary cause of plastic deformation in both nanoindentation/nanoscratch. However, secondary cooperative mechanisms are varied significantly according to grain size. Pileup formation was observed in the front of and sideways of the tool, and they exhibit strong dependence on grain orientation rather than grain size. Tip size has significant impact on nanoscratch characteristics; both frictional and normal forces monotonically increase as tip radii increase, while the friction coefficient value drops by about 38%. Additionally, the increase in scratch depth leads to an increase in frictional and normal forces as well as friction coefficient. To elucidate the relevance of indentation/scratch results with mechanical properties, uniaxial tensile test was performed for nc-samples, and the result indicates the existence of both the regular and inverse Hall-Petch relations at critical grain size of 110.9 angstrom. The present results suggest that indentation/scratch hardness has no apparent correlation with the mechanical properties of the substrate, whereas the plastic deformation has.

    Download full text (pdf)
    fulltext
  • 4.
    AlMotasem, Ahmed Tamer
    et al.
    Karlstad University, Faculty of Health, Science and Technology (starting 2013), Department of Engineering and Physics (from 2013). Assiut University, Egypt.
    Bergström, Jens
    Karlstad University, Faculty of Health, Science and Technology (starting 2013), Department of Engineering and Physics (from 2013).
    Gåård, Anders
    Karlstad University, Faculty of Health, Science and Technology (starting 2013), Department of Engineering and Physics (from 2013).
    Krakhmalev, Pavel
    Karlstad University, Faculty of Health, Science and Technology (starting 2013), Department of Engineering and Physics (from 2013).
    Holleboom, Thijs Jan
    Karlstad University, Faculty of Health, Science and Technology (starting 2013), Department of Engineering and Physics (from 2013).
    Tool microstructure impact on the wear behavior of ferrite iron during nanoscratching: An atomic level simulation2017In: Wear, ISSN 0043-1648, E-ISSN 1873-2577, Vol. 370-371, p. 39-45Article in journal (Refereed)
    Abstract [en]

    In the present work, molecular dynamics simulations were used to investigate the impact of the tool microstructure on the wear behavior of ferrite workpiece during nanoscratching. The tool microstructure was modified by varying the carbide (cementite) contents. The simulation results show that dislocations are the primary mechanism for plastic deformation of the workpiece material. It is found that total dislocation length varies significantly depending on the carbide content in the tool. Furthermore, other tribological phenomena were also observed to depend on the carbide contents. For example, the average value of frictional forces decreased while the normal force increases with increasing carbide contents, and hence the friction coefficient was decreased. Additionally, the shape and size of lateral and frontal pileups are lowered. The structural analysis of the pileup region reveals the loss of long range order and start of amorphisation. The temperature distribution of the pileup regions showed an increase of the pileup temperature when carbide is added into tool. The wear volume is considerably reduced when the carbide content increases. The average scratch hardness was found to decrease and the result was analyzed with the theoretical Taylor hardening model.

  • 5.
    AlMotasem, Ahmed Tamer
    et al.
    Karlstad University, Faculty of Health, Science and Technology (starting 2013), Department of Engineering and Physics (from 2013).
    Posselt, Matthias
    Helmholtz Zentrum Dresden-Rossendorf, Germany.
    Bergström, Jens
    Karlstad University, Faculty of Health, Science and Technology (starting 2013), Department of Engineering and Physics (from 2013).
    Nanoindentation and nanoscratching of a ferrite/austenite iron bi-crystal: An atomistic study2018In: Tribology International, ISSN 0301-679X, E-ISSN 1879-2464, Vol. 127, p. 231-239Article in journal (Refereed)
    Abstract [en]

    Molecular dynamics simulations are applied to investigate the wear/friction behavior of a ferrite/austenite iron bi-crystal, as a model system for duplex stainless steels. The plasticity of the ferrite phase is dominated by dislocations while both dislocations and stacking faults are the primary cause of plastic deformation of the austenite phase. Interestingly, the responses of tribological parameters vary depending on the scratch direction. For instance, the scratch hardness is increased by about 46% whereas the friction coefficient is reduced by about 22% when scratch starts from austenite to ferrite. At the interface, a local softening/hardening occurs because of dislocation-interface interaction. The present results demonstrate that martensitic phase transformation is responsible for experimentally observed high amount of ferrite of the pile-up.

  • 6.
    Bergstrom, Jens
    et al.
    Karlstad University, Faculty of Health, Science and Technology (starting 2013), Department of Engineering and Physics.
    Burman, Christer
    Karlstad University, Faculty of Health, Science and Technology (starting 2013), Department of Engineering and Physics.
    Svensson, Jonas
    Atlas Copco Rock Drills AB, Klerkgatan 21, SE-70225 Orebro, Sweden..
    Jansson, Andreas
    Atlas Copco Rock Drills AB, Klerkgatan 21, SE-70225 Orebro, Sweden..
    Ivansson, Charlotta
    Atlas Copco Rock Drills AB, Klerkgatan 21, SE-70225 Orebro, Sweden..
    Zhou, Jing
    Atlas Copco Rock Drills AB, Klerkgatan 21, SE-70225 Orebro, Sweden..
    Valizadeh, Sima
    Atlas Copco Rock Drills AB, Klerkgatan 21, SE-70225 Orebro, Sweden..
    Very High Cycle Fatigue of Two Ductile Iron Grades2016In: Steel Research International, ISSN 1611-3683, E-ISSN 1869-344X, Vol. 87, no 5, p. 614-621Article in journal (Refereed)
    Abstract [en]

    Two ductile iron grades, EN-GJS-600-3 a ferritic-pearlitic grade, and EN-GJS-600-10 a silicon strengthened ferritic nodular iron grade, are studied in the very high cycle fatigue range using a 20kHz ultrasonic test equipment. Fatigue strengths and SN-curves are achieved, and fracture surfaces and microstructures are investigated. The ferritic grade with higher ductility displays a lower fatigue strength at 10(8) load cycles than the ferritic-pearlitic grade, 142 and 167MPa, respectively. Examination of fracture surfaces shows that fatigue failures are controlled by micropores in both of the ductile iron grades, while the graphite nodule distributions do not seem to influence the difference in fatigue strengths. Prediction of the fatigue strengths, using a model for ductile iron proposed by Endo and Yanase, indicates a large potential for improvement in particular for the ferritic grade.

  • 7.
    Bergström, Jens
    Karlstad University, Faculty of Technology and Science, Materials Science. Karlstad University, Faculty of Technology and Science, Department of Mechanical and Materials Engineering.
    Strain-based approach to crack growth and thermal fatigue life of hot work tool steels2003Other (Other (popular science, discussion, etc.))
  • 8.
    Bergström, Jens
    et al.
    Karlstad University, Faculty of Technology and Science, Materials Science. Karlstad University, Faculty of Technology and Science, Department of Mechanical and Materials Engineering.
    Björk, T
    Westergard, R
    Hogmark, S
    Wear of surface treated dies for aluminium extrusion - a case study2001Other (Other (popular science, discussion, etc.))
  • 9.
    Bergström, Jens
    et al.
    Karlstad University, Faculty of Technology and Science, Materials Science. Karlstad University, Faculty of Technology and Science, Department of Mechanical and Materials Engineering.
    Burman, Christer
    Karlstad University, Faculty of Technology and Science, Materials Science. Karlstad University, Faculty of Technology and Science, Department of Mechanical and Materials Engineering.
    Simulation of Heat Checking in Die Casting1998Conference paper (Refereed)
  • 10.
    Bergström, Jens
    et al.
    Karlstad University, Faculty of Technology and Science, Materials Science. Karlstad University, Faculty of Technology and Science, Department of Mechanical and Materials Engineering.
    Burman, Christer
    Karlstad University, Faculty of Technology and Science, Materials Science. Karlstad University, Faculty of Technology and Science, Department of Mechanical and Materials Engineering.
    Persson, A
    Experimental simulation of heat checking using H13 tool steel2001Conference paper (Refereed)
  • 11.
    Bergström, Jens
    et al.
    Karlstad University, Faculty of Technology and Science, Materials Science. Karlstad University, Faculty of Technology and Science, Department of Mechanical and Materials Enineering.
    Carling, Karin
    Karlstad University, Faculty of Technology and Science, Department of Physics and Electrical Engineering.
    Andersson, J
    Secondary hardening carbides in hot work tool steels analyzed by TEM2009In: / [ed] P beiss, C Brockmann, S Franke, B Keysselitz, Aachen: Verlag mainz, Wissenschaftsverlag , 2009Conference paper (Refereed)
  • 12.
    Bergström, Jens
    et al.
    Karlstad University, Faculty of Technology and Science, Materials Science. Karlstad University, Faculty of Technology and Science, Department of Mechanical and Materials Engineering.
    Ericsson, T
    Surfaces of forming tools1997Book (Refereed)
  • 13.
    Bergström, Jens
    et al.
    Karlstad University, Faculty of Technology and Science, Materials Science. Karlstad University, Faculty of Technology and Science, Department of Mechanical and Materials Engineering.
    Fredriksson, Gunnel
    Karlstad University, Faculty of Technology and Science, Department of Mechanical and Materials Engineering. Karlstad University, Faculty of Technology and Science, Materials Science.
    Fatigue and Surface Defects in Tools for Cold Forming1997In: / [ed] J Bergström, T Ericsson, 1997Conference paper (Refereed)
  • 14.
    Bergström, Jens
    et al.
    Karlstad University, Faculty of Technology and Science, Department of Mechanical and Materials Engineering. Karlstad University, Faculty of Technology and Science, Materials Science.
    Fredriksson, Gunnel
    Karlstad University, Faculty of Technology and Science, Department of Mechanical and Materials Engineering. Karlstad University, Faculty of Technology and Science, Materials Science.
    Fatigue of Cold Work Steels1998Other (Other (popular science, discussion, etc.))
  • 15.
    Bergström, Jens
    et al.
    Karlstad University, Faculty of Technology and Science, Materials Science. Karlstad University, Faculty of Technology and Science, Department of Mechanical and Materials Engineering.
    Fredriksson, Gunnel
    Karlstad University, Faculty of Technology and Science, Department of Mechanical and Materials Engineering. Karlstad University, Faculty of Technology and Science, Materials Science.
    Fatigue of cold work tool steel1999In: Matériaux & Techniques, ISSN 0032-6895, Vol. 87, no 1-2, p. 9-14Article in journal (Refereed)
    Abstract [en]

    One important surface property of forming tools is their resistance to cracking due to fatigue loading. The wide variety of steel grades, material handling, machining operations and surface treatments will give very different fatigue properties. The present article gives examples on the influence of steel grades, EDM machining and surface coating. Initial cracks may be introduced in the tool during the processing to its final shape and surface finish, why a particular interest is given to small cracks introduced by the EDM process.

  • 16.
    Bergström, Jens
    et al.
    Karlstad University, Faculty of Technology and Science, Materials Science. Karlstad University, Faculty of Technology and Science, Department of Mechanical and Materials Engineering.
    Fredriksson, Gunnel
    Karlstad University, Faculty of Technology and Science, Department of Mechanical and Materials Engineering. Karlstad University, Faculty of Technology and Science, Materials Science.
    Johansson, M
    Kotik, Ouliana
    Thuvander, Fredrik
    Karlstad University, Faculty of Health, Science and Technology (starting 2013), Paper Surface Centre. Karlstad University, Faculty of Technology and Science, Materials Science. Karlstad University, Faculty of Technology and Science, Department of Mechanical and Materials Engineering.
    The Use of Tool Steels: Experience and Research2002Book (Refereed)
  • 17.
    Bergström, Jens
    et al.
    Karlstad University, Faculty of Technology and Science, Materials Science. Karlstad University, Faculty of Technology and Science, Department of Mechanical and Materials Engineering.
    Fredriksson, Gunnel
    Karlstad University, Faculty of Technology and Science, Department of Mechanical and Materials Engineering. Karlstad University, Faculty of Technology and Science, Materials Science.
    Persson, A
    Fatigue of tool steel in cold and hot work applications2000Other (Other (popular science, discussion, etc.))
  • 18.
    Bergström, Jens
    et al.
    Karlstad University, Faculty of Technology and Science, Department of Mechanical and Materials Engineering.
    Kazymyrovych, Vitaliy
    Karlstad University, Faculty of Technology and Science, Department of Mechanical and Materials Engineering.
    Burman, Christer
    Karlstad University, Faculty of Technology and Science, Department of Mechanical and Materials Engineering.
    Ekengren, Jens
    Karlstad University, Faculty of Technology and Science, Department of Mechanical and Materials Engineering.
    Test specimen geometry, stress calculation and mean stress in 20kHz testing in the very long fatigue life region2011In: VHCF5 5thInternational Conference on Very High Cycle Fatigue / [ed] Christina Berger, Hans-Jurgen Christ, Berlin: Deutcher Verband fur Materialforschung und prufung , 2011, p. 315-320Conference paper (Refereed)
  • 19.
    Bergström, Jens
    et al.
    Karlstad University, Faculty of Technology and Science, Department of Mechanical and Materials Enineering.
    Krakhmalev, Pavel
    Karlstad University, Faculty of Technology and Science, Department of Mechanical and Materials Enineering.
    Gåård, Anders
    Karlstad University, Faculty of Technology and Science, Department of Mechanical and Materials Enineering.
    Lindvall, Fredrik
    Karlstad University, Faculty of Technology and Science, Department of Mechanical and Materials Enineering.
    Galling in sheet metal forming2008In: Proceedings of the IDDRG 2008 Conference: Best in class stamping, 16-18 June 2008, Olofström: Industriellt utvecklingscentrum i Olofström AB , 2008Conference paper (Other academic)
  • 20.
    Bergström, Jens
    et al.
    Karlstad University, Faculty of Technology and Science, Materials Science. Karlstad University, Faculty of Technology and Science, Department of Mechanical and Materials Engineering.
    Rezai-Aria, F
    High temperature fatigue of tool steels2006Conference paper (Refereed)
  • 21.
    Bergström, Jens
    et al.
    Karlstad University, Faculty of Technology and Science, Materials Science. Karlstad University, Faculty of Technology and Science, Department of Mechanical and Materials Engineering.
    Sjöström, Johnny
    Persson, A
    Hogmark, S
    Failure modes in field-tested brass die casting dies2004In: Journal of Materials Processing Technology, v 148, n 1, 2004Article in journal (Refereed)
  • 22.
    Bergström, Jens
    et al.
    Karlstad University, Faculty of Technology and Science, Materials Science. Karlstad University, Faculty of Technology and Science, Department of Mechanical and Materials Engineering.
    Sundqvist, Martin
    Surface damage in extrusion and die casting1995Other (Other (popular science, discussion, etc.))
  • 23.
    Bergström, Jens
    et al.
    Karlstad University, Faculty of Technology and Science, Materials Science. Karlstad University, Faculty of Technology and Science, Department of Mechanical and Materials Engineering.
    Thuvander, F
    Wear of die materials in full scale plastic injection moulding of glassfibre reinforced poluycarbonate2001Other (Other (popular science, discussion, etc.))
  • 24.
    Bergström, Jens
    et al.
    Karlstad University, Faculty of Technology and Science, Materials Science. Karlstad University, Faculty of Technology and Science, Department of Mechanical and Materials Engineering.
    Thuvander, Fredrik
    Karlstad University, Faculty of Health, Science and Technology (starting 2013), Paper Surface Centre. Karlstad University, Faculty of Technology and Science, Materials Science. Karlstad University, Faculty of Technology and Science, Department of Mechanical and Materials Engineering.
    Devos, P.
    Boher, C.
    Wear of die materials in full scale plastic injection moulding of glassfibre reinforced polycarbonate2001In: Wear 251 2001 pp 1511-1521Article in journal (Refereed)
  • 25. Björk, T
    et al.
    Berger, M
    Westergård, R
    Hogmark, S
    Bergström, Jens
    Karlstad University, Faculty of Technology and Science, Materials Science. Karlstad University, Faculty of Technology and Science, Department of Mechanical and Materials Engineering.
    New PVD coatings applied to aluminium extrusion dies2001Other (Other (popular science, discussion, etc.))
  • 26. Björk, T.
    et al.
    Bergström, Jens
    Karlstad University, Faculty of Technology and Science, Materials Science. Karlstad University, Faculty of Technology and Science, Department of Mechanical and Materials Engineering.
    Hogmark, S.
    Tribological simulation of aluminium hot extrusion1999Other (Other (popular science, discussion, etc.))
  • 27. Björk, T.
    et al.
    Bergström, Jens
    Karlstad University, Faculty of Technology and Science, Materials Science. Karlstad University, Faculty of Technology and Science, Department of Mechanical and Materials Engineering.
    Hogmark, S.
    Tribological simulation of aluminium hot extrusion1997Other (Other (popular science, discussion, etc.))
  • 28. Björk, T
    et al.
    Westergård, R
    Hogmark, S
    Bergström, Jens
    Karlstad University, Faculty of Technology and Science, Materials Science. Karlstad University, Faculty of Technology and Science, Department of Mechanical and Materials Engineering.
    Hedenqvist, P
    PVD Duplex coatings for aluminium extrusion dies1999Other (Other (popular science, discussion, etc.))
  • 29.
    Chai, Guocai
    et al.
    Linköping University, Sweden.
    Bergström, Jens
    Karlstad University, Faculty of Health, Science and Technology (starting 2013), Department of Engineering and Physics (from 2013).
    Burman, Christer
    Karlstad University, Faculty of Health, Science and Technology (starting 2013), Department of Engineering and Physics (from 2013).
    Crack Initiation in Bulk Matrix of Austenitic Stainless Steel during Very High Cycle Fatigue2023In: Materials Performance and Characterization, ISSN 2379-1365, E-ISSN 2165-3992, Vol. 12, no 2Article in journal (Refereed)
    Abstract [en]

    In the very high cycle fatigue regime, fatigue crack initiation in high-strength steels is usually correlated to a subsurface inclusion with a fine granular area (FGA). Localized stress-strain concentration at the subsurface inclusion is a critical factor. Fatigue crack initiation with an FGA in the bulk matrix without any defect has rarely been reported. In this paper, a fundamental study on the formation of FGAs in the bulk matrix of an austenitic stainless steel has been carried out using a progressive stepwise load-increasing test with a cycle step of about 108 cycles. FGA formation in the subsurface bulk matrix has been observed. The micro structural damage in the fatigue-tested specimens has been studied using the electron channeling contrast imaging electron microscopy technique. Strain localization and grain fragmentation are the main processes for the formation of FGAs. Local plasticity exhaustion leads to crack initiation due to local stress concentrations. This method can also be used to predict the fatigue damage process, especially the damage rate in individual specimens.

  • 30.
    Chai, Guocai
    et al.
    Linköpings universitet; Sandvik Materials Technology, Sweden.
    Bergström, Jens
    Karlstad University, Faculty of Health, Science and Technology (starting 2013), Department of Engineering and Physics (from 2013).
    Burman, Christer
    Karlstad University, Faculty of Health, Science and Technology (starting 2013), Department of Engineering and Physics (from 2013).
    Formation of fine granular area in a non-defect matrix of austenitic stainless steel during very high cycle fatigue2023In: Fatigue & Fracture of Engineering Materials & Structures, ISSN 8756-758X, E-ISSN 1460-2695, Vol. 46, no 6, p. 2364-2373Article in journal (Refereed)
    Abstract [en]

    A fine granular area, FGA, is a typical phenomenon observed at the very high cycle fatigue fracture crack origin with a subsurface defect in the material. The FGA has been widely investigated, and different mechanisms have been proposed. In this paper, the formation of FGA in a non-defect matrix of one austenitic steel during very high cycle fatigue was studied using a progressive stepwise load-increasing method and electron scanning microscopy/electron channeling contrast imaging (ECCI) technique. A nano rough surface area or FGA at the fatigue crack origin has been observed in the subsurface matrix without any defect. It is a new phenomenon. A mechanism was proposed using the dislocation plasticity theory. The formation of FGA in a non-defect matrix is a localized plasticity exhausting process by strain localization, grain fragmentation, stress concentration and nano crack initiation and propagation along low-angle grain boundaries. 

    Download full text (pdf)
    fulltext
  • 31.
    Ekengren, Jens
    et al.
    Karlstad University, Faculty of Technology and Science, Department of Mechanical and Materials Engineering.
    Bergström, Jens
    Karlstad University, Faculty of Technology and Science, Department of Mechanical and Materials Engineering.
    Detecting large inclusions in steels: evaluating methods2009In: Steel Research International, ISSN 1611-3683, E-ISSN 1869-344X, Vol. 80, no 11, p. 854-858Article in journal (Refereed)
    Abstract [en]

    The distributions of large non-metallic inclusions in two steel grades have been investigated using light optical microscopy, scanning electron microscopy and ultrasonic fatigue testing in the gigacycle range. The different methods have inherently different capabilities for finding inclusions in different size ranges. A measure of the distribution of large inclusions is proposed as the size S at which half of the fatigue specimens are expected to contain at least one inclusion of size S or larger, corresponding to 50% failure probability. Values of S are obtained using the volume distribution estimated by the three methods. Extrapolation from microscopy measurements on surfaces agree with fatigue fractography results regarding density of large inclusions, as measured by the proposed ranking variable S

  • 32.
    Ekengren, Jens
    et al.
    Karlstad University, Faculty of Technology and Science, Department of Mechanical and Materials Engineering.
    Bergström, Jens
    Karlstad University, Faculty of Technology and Science, Department of Mechanical and Materials Engineering.
    Estimating the volume distribution of large defects using Generalized Extreme Values2011Manuscript (preprint) (Other academic)
    Abstract [en]

    The presence of defects, such as oxides and other non-metallic inclusions, is an important factor in determining the properties of steels. Due to improvements in the manufacturing of high-quality steels, the amount of large defects has decreased and therefore it has become increasingly difficult to accurately determine their distribution using conventional methods. Previously, a method for estimating the distribution of large defects using a conversion from the Gumbel distribution has been presented. However, it has been shown that the Gumbel distribution is not always appropriate for modelling the sizes of the largest defects and that the Generalized Extreme Values (GEV) distribution should be used instead. In this work a more general method for the estimation of the total volume distribution of large defects isproposed, showing how the volume distribution may be calculated from the estimated parameters for the GEV distribution. The new method is applied to the results of a series of specimens made from high-quality tool steel tested in ultrasonic resonance fatigue. Possible methods for obtaining the confidence limits of thevolume distribution are also discussed.

  • 33.
    Ekengren, Jens
    et al.
    Karlstad University, Faculty of Technology and Science, Department of Mechanical and Materials Engineering.
    Bergström, Jens
    Karlstad University, Faculty of Technology and Science, Department of Mechanical and Materials Engineering.
    Extreme value distributions of inclusions in six  steels2012In: Extremes, ISSN 1386-1999, E-ISSN 1572-915X, Vol. 15, p. 257-265Article in journal (Refereed)
    Abstract [en]

    There is a prevailing assumption that the largest inclusions in steel volumes follows mode I of the Generalized Extreme Values (GEV) distribution. In this work, the GEV distributions of non-metallic inclusions in six different high performance steels, of different grades and processing routes, were investigated by means of fractography of inclusions causing failure in ultrasonic fatigue testing to one billion cycles and all three modes of the GEV were found for the different steel grades. Values of the shape parameter ξ of the GEV distribution as high as 0.51 (standard deviation 0.11) were found in one steel grade. Thus, the present results show that the assumption of GEV-I (Gumbel, LEVD) distribution has to be substantiated before being used to estimate the size of the largest inclusions.

  • 34.
    Ekengren, Jens
    et al.
    Karlstad University, Faculty of Technology and Science, Materials Science. Karlstad University, Faculty of Technology and Science, Department of Mechanical and Materials Engineering.
    Bergström, Jens
    Karlstad University, Faculty of Technology and Science, Materials Science. Karlstad University, Faculty of Technology and Science, Department of Mechanical and Materials Engineering.
    Extreme value distributions of inclusions in six steels2008Other (Other (popular science, discussion, etc.))
  • 35.
    Ekengren, Jens
    et al.
    Karlstad University, Faculty of Technology and Science, Avdelningen för maskin- och materialteknik.
    Bergström, Jens
    Karlstad University, Faculty of Technology and Science, Avdelningen för maskin- och materialteknik.
    Influence of life length on estimated defect  distribution in a low defect steel material2011In: Proceedings of the Fifth International Conference on Very High Cycle Fatigue / [ed] C. Berger and H.-J. Christ, 2011, p. 177-182Conference paper (Refereed)
    Abstract [en]

    This paper reports on results of very high cycle fatigue tests on a steel with a relatively low number of defects per unit volume. Two series of newly designed dog-bone specimens, with low stress gradients, were tested at two constant stress levels, aiming at providing fatigue life lengths of 106–108 cycles and 107–109 cycles, respectively. Fatigue-initiating defects on the fracture surfaces were measured and the corresponding size distributions were analysed to investigate the influence of the elevated stress level needed to achieve shorter life lengths.The presented results indicate a difference between the distribution of initiating defects in the long and shorter life length test series. The main conclusion is that fixed stress level fatigue testing to life lengths around 107 cycles may be a suitable method to estimate the content of large defects in low defect steel materials, provided a suitable test specimen geometry with low stress gradients is used.

  • 36.
    Ekengren, Jens
    et al.
    Karlstad University, Faculty of Technology and Science, Avdelningen för maskin- och materialteknik.
    Kazymyrovych, Vitaliy
    Karlstad University, Faculty of Technology and Science, Avdelningen för maskin- och materialteknik.
    Bergström, Jens
    Karlstad University, Faculty of Technology and Science, Avdelningen för maskin- och materialteknik.
    Assessment of strength and inclusions of Tool Steels in Very High Cycle Fatigue2009In: Proceedings of the 8th International Tooling Conference, Vol 1 / [ed] P. Beiss, C. Broeckmann, S. Franke, B. Keysselitz, Verlag Mainz, Wissenschaftsverlag , 2009Conference paper (Refereed)
    Abstract [en]

    Fatigue strength is an important material property for many tooling applications, particularly in high performance applications. The research in Very High Cycle Fatigue (VHCF) has demonstrated that the traditional fatigue limit may not be valid for many materials subjected to 107 or more load cycles. Presently, both materials data and mechanism knowledge is missing on VHCF applications, even though many components are run at these life lengths. The fatigue strength is commonly controlled by different defects initiating failure, as in well controlled laboratory experiments may be internal inclusions. In this paper VHCF experimental testing was accomplished by the use of ultrasonic fatigue testing run at 20 kHz allowing long life evaluation within reasonably short test time. Fatigue strength, failure mechanisms and inclusion content were accordingly assessed. Fatigue strength data on H13 tool steel are presented, as well as a statistical approach considering available defect distribution and load distribution in the critically stressed volume, important to both steel supplier and end-user.

  • 37.
    Ekengren, Jens
    et al.
    Karlstad University, Faculty of Technology and Science, Department of Mechanical and Materials Enineering.
    Kazymyrovych, Vitaliy
    Karlstad University, Faculty of Technology and Science, Department of Mechanical and Materials Enineering.
    Burman, Christer
    Karlstad University, Faculty of Technology and Science, Department of Mechanical and Materials Enineering.
    Bergström, Jens
    Karlstad University, Faculty of Technology and Science, Department of Mechanical and Materials Enineering.
    Relating gigacycle fatigue to other methods in evaluating the inclusion distribution of a H13 tool steel2007In: Fourth International Conference on Very High Cycle Fatigue (VHCF-4) / [ed] John E. Allison, J. Wayne Jones, James M. Larsen & Robert O. Ritchie, TMS (The Minerals, Metals & Materials Society) , 2007, p. 45-50Conference paper (Refereed)
    Abstract [en]

    Inclusions play a crucial role for the fatigue properties of high strength steel, but to find the largest inclusions by microscopy measurements large areas have to be examined.In this study ultrasonic gigacycle staircase fatigue testing has been used to find large inclusions in an H13 tool steel. The inclusions have been examined in SEM and their size distribution modeled using methods from extreme value statistics. The inclusion distribution obtained from the fatigue crack surfaces is compared to distributions acquired by microscopy study of cross sections as well as ultrasound immersion tank measurements and to the corresponding staircase fatigue data via the Murakami √Area model.It is shown that the fatigue method more effectively finds large inclusions than the other methods. It is also shown that the correlation between predictions of inclusion sizes by the √Area model from stress levels and fatigue initiating inclusions is weak forthis material.

  • 38.
    Ekengren, Jens
    et al.
    Karlstad University, Faculty of Technology and Science, Materials Science. Karlstad University, Faculty of Technology and Science, Department of Mechanical and Materials Engineering.
    Kazymyrovych, Vitaliy
    Burman, Christer
    Karlstad University, Faculty of Technology and Science, Materials Science. Karlstad University, Faculty of Technology and Science, Department of Mechanical and Materials Engineering.
    Bergström, Jens
    Karlstad University, Faculty of Technology and Science, Materials Science. Karlstad University, Faculty of Technology and Science, Department of Mechanical and Materials Engineering.
    RELATING GIGACYCLE FATIGUE TO OTHER METHODS IN EVALUATING THE INCLUSION DISTRIBUTION OF A H13 TOOL STEEL2007Conference paper (Refereed)
    Abstract [en]

    Inclusions play a crucial role for the fatigue properties of high strength steel, but to find the

    largest inclusions by microscopy measurements large areas have to be examined. In this study ultrasonic gigacycle staircase fatigue testing has been used to find large inclusions in an H13 tool steel. The inclusions have been examined in SEM and their size

    distribution modeled using methods from extreme value statistics. The inclusion distribution obtained from the fatigue crack surfaces is compared to distributions acquired by microscopy study of cross sections as well as ultrasound immersion tank measurements and to the corresponding staircase fatigue data via the Murakami \sqrt{Area} model. It is shown that the fatigue method more effectively finds large inclusions than the other methods. It is also shown that the correlation between predictions of inclusion sizes by the \sqrt{Area} model from stress levels and fatigue initiating inclusions is weak for this material

  • 39.
    Fredriksson, Gunnel
    et al.
    Karlstad University, Faculty of Technology and Science, Department of Mechanical and Materials Engineering. Karlstad University, Faculty of Technology and Science, Materials Science.
    Bergström, Jens
    Karlstad University, Faculty of Technology and Science, Materials Science. Karlstad University, Faculty of Technology and Science, Department of Mechanical and Materials Engineering.
    Hogmark, S.
    Crack Growth in Cold Work Tool Steels - Influence of Surface Condition, Microstructure and Hardness1999Conference paper (Refereed)
  • 40.
    Fredriksson, Gunnel
    et al.
    Karlstad University, Faculty of Technology and Science, Department of Mechanical and Materials Engineering. Karlstad University, Faculty of Technology and Science, Materials Science.
    Bergström, Jens
    Karlstad University, Faculty of Technology and Science, Materials Science. Karlstad University, Faculty of Technology and Science, Department of Mechanical and Materials Engineering.
    Hogmark, S
    Fatigue resistance and surface properties of EDMed cold work tool steels1996Conference paper (Refereed)
  • 41.
    Gåård, Anders
    et al.
    Karlstad University, Faculty of Technology and Science, Department of Mechanical and Materials Engineering.
    Hallbäck, Nils
    Karlstad University, Faculty of Technology and Science, Department of Mechanical and Materials Engineering.
    Krakhmalev, Pavel
    Karlstad University, Faculty of Technology and Science, Department of Mechanical and Materials Engineering.
    Bergström, Jens
    Karlstad University, Faculty of Technology and Science, Department of Mechanical and Materials Engineering. Karlstad University, Faculty of Technology and Science, Materials Science.
    Temperature effects on adhesive wear in dry sliding contacts2010In: Wear, ISSN 0043-1648, E-ISSN 1873-2577, Vol. 268, no 7-8, p. 968-975Article in journal (Refereed)
  • 42.
    Gåård, Anders
    et al.
    Karlstad University, Faculty of Technology and Science, Materials Science. Karlstad University, Faculty of Technology and Science, Department of Mechanical and Materials Engineering.
    Hirvonen Grytzelius, Joakim
    Karlstad University, Faculty of Technology and Science, Department of Physics and Electrical Engineering.
    Krakhmalev, Pavel
    Karlstad University, Faculty of Technology and Science, Materials Science. Karlstad University, Faculty of Technology and Science, Department of Mechanical and Materials Engineering.
    Zhang, Hanmin
    Karlstad University, Faculty of Technology and Science, Department of Physics and Electrical Engineering.
    Bergström, Jens
    Karlstad University, Faculty of Technology and Science, Department of Mechanical and Materials Engineering. Karlstad University, Faculty of Technology and Science, Materials Science.
    Experimental study of the relationship between temperature and adhesive forces for low-alloyed steel, stainless steel and titanium using atomic force microscopy in ultra-high vacuum2008In: Journal of Applied Physics, ISSN 0021-8979, E-ISSN 1089-7550, ISSN 0021-8979, Vol. 103, no 12, article id 124301Article in journal (Refereed)
  • 43.
    Gåård, Anders
    et al.
    Karlstad University, Faculty of Technology and Science, Materials Science. Karlstad University, Faculty of Technology and Science, Department of Mechanical and Materials Engineering.
    Krakhmalev, Pavel
    Karlstad University, Faculty of Technology and Science, Materials Science. Karlstad University, Faculty of Technology and Science, Department of Mechanical and Materials Engineering.
    Bergström, Jens
    Karlstad University, Faculty of Technology and Science, Department of Mechanical and Materials Engineering. Karlstad University, Faculty of Technology and Science, Materials Science.
    Influence of tool steel microstructure on origin of galling initiation and wear mechanisms under dry sliding against carbon steel sheets2009In: Wear, ISSN 0043-1648, E-ISSN 1873-2577, Vol. 267, no 1-4, p. 387-393Article in journal (Refereed)
  • 44.
    Gåård, Anders
    et al.
    Karlstad University, Faculty of Technology and Science, Materials Science. Karlstad University, Faculty of Technology and Science, Department of Mechanical and Materials Engineering.
    Krakhmalev, Pavel
    Karlstad University, Faculty of Technology and Science, Materials Science. Karlstad University, Faculty of Technology and Science, Department of Mechanical and Materials Engineering.
    Bergström, Jens
    Karlstad University, Faculty of Technology and Science, Department of Mechanical and Materials Engineering. Karlstad University, Faculty of Technology and Science, Materials Science.
    Microstructural characterization and wear behavior of (Fe,Ni)-TiC MMC prepared by DMLS2006In: Journal of Alloys and Compounds, ISSN 0925-8388, E-ISSN 1873-4669, Vol. 421, no 1-2, p. 166-171Article in journal (Refereed)
  • 45.
    Gåård, Anders
    et al.
    Karlstad University, Faculty of Technology and Science, Materials Science. Karlstad University, Faculty of Technology and Science, Department of Mechanical and Materials Engineering.
    Krakhmalev, Pavel
    Karlstad University, Faculty of Technology and Science, Materials Science. Karlstad University, Faculty of Technology and Science, Department of Mechanical and Materials Engineering.
    Bergström, Jens
    Karlstad University, Faculty of Technology and Science, Department of Mechanical and Materials Engineering. Karlstad University, Faculty of Technology and Science, Materials Science.
    Wear mechanisms in deep drawing of carbon steel: correlation to laboratory testing2008In: Tribotest, ISSN 1354-4063, Vol. 14, no 1, p. 1-9Article in journal (Refereed)
  • 46.
    Gåård, Anders
    et al.
    Karlstad University, Faculty of Technology and Science, Department of Mechanical and Materials Engineering.
    Krakhmalev, Pavel
    Karlstad University, Faculty of Technology and Science, Materials Science. Karlstad University, Faculty of Technology and Science, Department of Mechanical and Materials Engineering.
    Bergström, Jens
    Karlstad University, Faculty of Technology and Science, Department of Mechanical and Materials Engineering. Karlstad University, Faculty of Technology and Science, Materials Science.
    Wear mechanisms in galling: cold work tool materials sliding against high-strength carbon steel sheets2009In: Tribology letters, ISSN 1023-8883, E-ISSN 1573-2711, Vol. 33, no 1, p. 45-53Article in journal (Other academic)
    Abstract [en]

    Transfer and accumulation of adhered sheet material, generally referred to as galling, is the major cause for tool failure in sheet metal forming. In this study, the galling resistances of several tool steels were evaluated against dual-phase high-strength carbon steel using a SOFS tribometer, in which disc-shaped tools were slid against a real sheet surface in dry sliding test conditions. Three different frictional regimes were identified and characterized during sliding, and any transition in friction corresponded to a transition in wear mechanisms of the sheets. The performance of the tools depended on load, material and the particular frictional regime. Best overall performance was obtained by nitrogen-alloyed powder metallurgy tool steel.

  • 47.
    Gåård, Anders
    et al.
    Karlstad University, Faculty of Technology and Science, Materials Science. Karlstad University, Faculty of Technology and Science, Department of Mechanical and Materials Engineering.
    Krakhmalev, Pavel
    Karlstad University, Faculty of Technology and Science, Materials Science. Karlstad University, Faculty of Technology and Science, Department of Mechanical and Materials Engineering.
    Bergström, Jens
    Karlstad University, Faculty of Technology and Science, Department of Mechanical and Materials Engineering. Karlstad University, Faculty of Technology and Science, Materials Science.
    Hallbäck, Nils
    Karlstad University, Faculty of Technology and Science.
    Galling resistance and wear mechanisms - cold work tool materials sliding against carbon steel sheets2007In: Tribology letters, ISSN 1023-8883, E-ISSN 1573-2711, Vol. 26, no 1, p. 67-72Article in journal (Refereed)
  • 48.
    Hanson, Magnus
    et al.
    Department of Materials Science, Uppsala University.
    Gåård, Anders
    Karlstad University, Faculty of Technology and Science, Materials Science. Karlstad University, Faculty of Technology and Science, Department of Mechanical and Materials Engineering.
    Hogmark, Sture
    Department of Materials Science, Uppsala University.
    Krakhmalev, Pavel
    Karlstad University, Faculty of Technology and Science, Materials Science. Karlstad University, Faculty of Technology and Science, Department of Mechanical and Materials Engineering.
    Bergström, Jens
    Karlstad University, Faculty of Technology and Science, Department of Mechanical and Materials Engineering. Karlstad University, Faculty of Technology and Science, Materials Science.
    Comparison of two test methods for evaluation of forming tool materials2008In: Tribotest, ISSN 1354-4063, Vol. 14, no 2, p. 147-158Article in journal (Refereed)
  • 49. Hjertsén, D
    et al.
    Sjöström, Johnny
    Bergström, Jens
    Karlstad University, Faculty of Technology and Science, Materials Science. Karlstad University, Faculty of Technology and Science, Department of Mechanical and Materials Engineering.
    Näsström, M
    Finite element simulation of tool steel stress response as used in hot forging2004Conference paper (Refereed)
  • 50.
    Javadzadeh Kalahroudi, Faezeh
    et al.
    Karlstad University, Faculty of Health, Science and Technology (starting 2013), Department of Engineering and Physics (from 2013).
    Chantziara, Katerina
    Karlstad University, Faculty of Health, Science and Technology (starting 2013), Department of Engineering and Physics (from 2013).
    Sadek, Mohamed
    Karlstad University, Faculty of Health, Science and Technology (starting 2013), Department of Engineering and Physics (from 2013).
    Lin, Fengxiang
    Karlstad University, Faculty of Health, Science and Technology (starting 2013), Department of Engineering and Physics (from 2013).
    Maistro, Giulio
    Uddeholms AB, Sweden.
    Anantha, Krishnan Hariramabad
    Uddeholms AB, Sweden.
    Bergström, Jens
    Karlstad University, Faculty of Health, Science and Technology (starting 2013), Department of Engineering and Physics (from 2013).
    Grehk, Mikael
    Karlstad University, Faculty of Health, Science and Technology (starting 2013), Department of Engineering and Physics (from 2013).
    High-Nitrogen PM Tool Steel: A Comparison Of Microstructure And Mechanical Properties Of As-HIPed And HIPed Followed By Hot Working2022In: World PM 2022 Congress Proceedings, European Powder Metallurgy Association (EPMA) , 2022Conference paper (Other academic)
    Abstract [en]

    High-nitrogen-chromium alloyed powder metallurgy (PM) tool steels offer many attractive features including high strength and corrosion resistance. The PM route offers various advantages such as advanced alloy composition, high homogeneity, and well-defined size distribution of hard phase particles. This study presents microstructure and mechanical properties of a PM Cr-Mo-V-N alloy. The conventional manufacturing route for this alloy is hot isostatic pressing (HIP) followed by hot working. To investigate the possibility of near-net-shape manufacturing, a comprehensive comparison of the performance was made between steels produced by as-HIPed and HIPed followed by hot working. Both steel types were heat treated in the same way to obtain martensitic matrix with limited retained austenite. In the present investigation, microstructure and phase analyses were performed by X-ray diffraction and scanning electron microscopy. Mechanical tests were carried out by hardness measurements and tensile fatigue tests in the very high cycle fatigue regime using ultrasonic fatigue testing. 

123 1 - 50 of 126
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • apa.csl
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf