Ändra sökning
Avgränsa sökresultatet
1 - 9 av 9
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • apa.csl
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Träffar per sida
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
Markera
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1.
    Aboueata, N.
    et al.
    Qatar University, Doha, Qatar.
    Alrasbi, S.
    Qatar University, Doha, Qatar.
    Erbad, A.
    Qatar University, Doha, Qatar.
    Kassler, Andreas
    Karlstads universitet, Fakulteten för hälsa, natur- och teknikvetenskap (from 2013), Institutionen för matematik och datavetenskap (from 2013).
    Bhamare, Deval
    Karlstads universitet, Fakulteten för hälsa, natur- och teknikvetenskap (from 2013), Institutionen för matematik och datavetenskap (from 2013).
    Supervised machine learning techniques for efficient network intrusion detection2019Ingår i: Proceedings - International Conference on Computer Communications and Networks, ICCCN, IEEE, 2019Konferensbidrag (Refereegranskat)
    Abstract [en]

    Cloud computing is gaining significant traction and virtualized data centers are becoming popular as a cost-effective infrastructure in telecommunication industry. Infrastructure as a Service (IaaS), Platform as a Service (PaaS) and Software as a Service (SaaS) are being widely deployed and utilized by end users, including many private as well as public organizations. Despite its wide-spread acceptance, security is still the biggest threat in cloud computing environments. Users of cloud services are under constant fear of data loss, security breaches, information theft and availability issues. Recently, learning-based methods for security applications are gaining popularity in the literature with the advents in machine learning (ML) techniques. In this work, we explore applicability of two well-known machine learning approaches, which are, Artificial Neural Networks (ANN) and Support Vector Machines (SVM), to detect intrusions or anomalous behavior in the cloud environment. We have developed ML models using ANN and SVM techniques and have compared their performances. We have used UNSW-NB-15 dataset to train and test the models. In addition, we have performed feature engineering and parameter tuning to find out optimal set of features with maximum accuracy to reduce the training time and complexity of the ML models. We observe that with proper features set, SVM and ANN techniques have been able to achieve anomaly detection accuracy of 91% and 92% respectively, which is higher compared against that of the one achieved in the literature, with reduced number of features needed to train the models.

  • 2.
    Bhamare, Deval
    et al.
    Karlstads universitet, Fakulteten för hälsa, natur- och teknikvetenskap (from 2013), Institutionen för matematik och datavetenskap (from 2013).
    Kassler, Andreas
    Karlstads universitet, Fakulteten för hälsa, natur- och teknikvetenskap (from 2013), Institutionen för matematik och datavetenskap (from 2013).
    Vestin, Jonathan
    Karlstads universitet, Fakulteten för hälsa, natur- och teknikvetenskap (from 2013), Institutionen för matematik och datavetenskap (from 2013).
    Khoshkholghi, Mohammad Ali
    Karlstads universitet, Fakulteten för hälsa, natur- och teknikvetenskap (from 2013), Institutionen för matematik och datavetenskap (from 2013).
    Taheri, Javid
    Karlstads universitet, Fakulteten för hälsa, natur- och teknikvetenskap (from 2013), Institutionen för matematik och datavetenskap (from 2013).
    IntOpt: In-Band Network Telemetry Optimization for NFV Service Chain Monitoring2019Ingår i: 2019 IEEE International Conference on Communications (ICC) Próceedings, IEEE, 2019Konferensbidrag (Refereegranskat)
    Abstract [en]

    Managing and scaling virtual network function(VNF) service chains require the collection and analysis ofnetwork statistics and states in real time. Existing networkfunction virtualization (NFV) monitoring frameworks either donot have the capabilities to express the range of telemetryitems needed to perform management or do not scale tolarge traffic volumes and rates. We present IntOpt, a scalableand expressive telemetry system designed for flexible VNFservice chain network monitoring using active probing. IntOptallows to specify monitoring requirements for individual servicechain, which are mapped to telemetry item collection jobsthat fetch the required telemetry items from P4 (programmingprotocol-independent packet processors) programmable dataplaneelements. In our approach, the SDN controller creates theminimal number of monitoring flows to monitor the deployedservice chains as per their telemetry demands in the network.We propose a simulated annealing based random greedy metaheuristic(SARG) to minimize the overhead due to activeprobing and collection of telemetry items. Using P4-FPGA, webenchmark the overhead for telemetry collection and compareour simulated annealing based approach with a na¨ıve approachwhile optimally deploying telemetry collection probes. Ournumerical evaluation shows that the proposed approach canreduce the monitoring overhead by 39% and the total delays by57%. Such optimization may as well enable existing expressivemonitoring frameworks to scale for larger real-time networks.

    Ladda ner fulltext (pdf)
    fulltext
  • 3.
    Bhamare, Deval
    et al.
    Karlstads universitet, Fakulteten för hälsa, natur- och teknikvetenskap (from 2013), Institutionen för matematik och datavetenskap (from 2013).
    Zolanvari, M.
    Washington Univ, Dept Comp Sci & Engn, St Louis, MO 63110 USA.
    Erbad, A.
    Qatar Univ, Dept Comp Sci & Engn, Doha, Qatar.
    Jain, R.
    Washington Univ, Dept Comp Sci & Engn, St Louis, MO 63110 USA.
    Khan, K.
    Qatar Univ, Dept Comp Sci & Engn, Doha, Qatar.
    Meskin, N.
    Qatar Univ, Dept Elect Engn, Doha, Qatar.
    Cybersecurity for industrial control systems: A survey2020Ingår i: Computers & security (Print), ISSN 0167-4048, E-ISSN 1872-6208, Vol. 89, artikel-id 101677Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Industrial Control System (ICS) is a general term that includes supervisory control & data acquisition (SCADA) systems, distributed control systems (DCS), and other control system configurations such as programmable logic controllers (PLC). ICSs are often found in the industrial sectors and critical infrastructures, such as nuclear and thermal plants, water treatment facilities, power generation, heavy industries, and distribution systems. Though ICSs were kept isolated from the Internet for so long, significant achievable business benefits are driving a convergence between ICSs and the Internet as well as information technology (IT) environments, such as cloud computing. As a result, ICSs have been exposed to the attack vectors used in the majority of cyber-attacks. However, ICS devices are inherently much less secure against such advanced attack scenarios. A compromise to ICS can lead to enormous physical damage and danger to human lives. In this work, we have a close look at the shift of the ICS from stand-alone systems to cloud-based environments. Then we discuss the major works, from industry and academia towards the development of the secure ICSs, especially applicability of the machine learning techniques for the ICS cyber-security. The work may help to address the challenges of securing industrial processes, particularly while migrating them to the cloud environments.

  • 4.
    Fischer, Andreas
    et al.
    Karlstads universitet, Fakulteten för hälsa, natur- och teknikvetenskap (from 2013), Institutionen för matematik och datavetenskap (from 2013).
    Bhamare, Deval
    Karlstads universitet, Fakulteten för hälsa, natur- och teknikvetenskap (from 2013), Institutionen för matematik och datavetenskap (from 2013).
    Kassler, Andreas
    Karlstads universitet, Fakulteten för ekonomi, kommunikation och IT, Centrum för HumanIT. Karlstads universitet, Fakulteten för hälsa, natur- och teknikvetenskap (from 2013), Institutionen för matematik och datavetenskap (from 2013).
    On the Construction of Optimal Embedding Problems for Delay-Sensitive Service Function Chains2019Ingår i: Proceedings of the ICCCN 2019: 28th International Conference on Computer Communications and Networks, Valencia, Spain, July 29-August 1, 2019, IEEE, 2019, s. -28Konferensbidrag (Refereegranskat)
  • 5.
    Gupta, Lay
    et al.
    Washington University, USA.
    Jain, Raj
    Washington University, USA.
    Erbad, Aiman
    Qatar University, Qatar.
    Bhamare, Deval
    Karlstads universitet, Fakulteten för hälsa, natur- och teknikvetenskap (from 2013), Institutionen för matematik och datavetenskap (from 2013).
    The P-ART framework for placement of virtual network services in a multi-cloud environment2019Ingår i: Computer Communications, ISSN 0140-3664, E-ISSN 1873-703X, Vol. 139, s. 103-122Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Carriers' network services are distributed, dynamic, and investment intensive. Deploying them as virtual network services (VNS) brings the promise of low-cost agile deployments, which reduce time to market new services. If these virtual services are hosted dynamically over multiple clouds, greater flexibility in optimizing performance and cost can be achieved. On the flip side, when orchestrated over multiple clouds, the stringent performance norms for carrier services become difficult to meet, necessitating novel and innovative placement strategies. In selecting the appropriate combination of clouds for placement, it is important to look ahead and visualize the environment that will exist at the time a virtual network service is actually activated. This serves multiple purposes - clouds can be selected to optimize the cost, the chosen performance parameters can be kept within the defined limits, and the speed of placement can be increased. In this paper, we propose the P-ART (Predictive-Adaptive Real Time) framework that relies on predictive-deductive features to achieve these objectives. With so much riding on predictions, we include in our framework a novel concept-drift compensation technique to make the predictions closer to reality by taking care of long-term traffic variations. At the same time, near real-time update of the prediction models takes care of sudden short-term variations. These predictions are then used by a new randomized placement heuristic that carries out a fast cloud selection using a least-cost latency-constrained policy. An empirical analysis carried out using datasets from a queuing-theoretic model and also through implementation on CloudLab, proves the effectiveness of the PART framework. The placement system works fast, placing thousands of functions in a sub-minute time frame with a high acceptance ratio, making it suitable for dynamic placement. We expect the framework to be an important step in making the deployment of carrier-grade VNS on multi-cloud systems, using network function virtualization (NFV), a reality.

    Ladda ner fulltext (pdf)
    fulltext
  • 6.
    Khoshkholghi, Mohammad Ali
    et al.
    Karlstads universitet, Fakulteten för hälsa, natur- och teknikvetenskap (from 2013), Institutionen för matematik och datavetenskap (from 2013).
    Gokan Khan, Michel
    Karlstads universitet, Fakulteten för hälsa, natur- och teknikvetenskap (from 2013), Institutionen för matematik och datavetenskap (from 2013).
    Alizadeh Noghani, Kyoomars
    Karlstads universitet, Fakulteten för hälsa, natur- och teknikvetenskap (from 2013), Institutionen för matematik och datavetenskap (from 2013).
    Taheri, Javid
    Karlstads universitet, Fakulteten för hälsa, natur- och teknikvetenskap (from 2013), Institutionen för matematik och datavetenskap (from 2013).
    Bhamare, Deval
    Karlstads universitet, Fakulteten för hälsa, natur- och teknikvetenskap (from 2013), Institutionen för matematik och datavetenskap (from 2013).
    Kassler, Andreas
    Karlstads universitet, Fakulteten för hälsa, natur- och teknikvetenskap (from 2013), Institutionen för matematik och datavetenskap (from 2013).
    Xiang, Z.
    Zhejiang University, CHN.
    Deng, S.
    Zhejiang University, CHN.
    Yang, X.
    Shanghai Ploytechnic University, CHN .
    Service Function Chain Placement for Joint Cost and Latency Optimization2020Ingår i: Mobile Networks and Applications, ISSN 1383-469X, E-ISSN 1572-8153, Vol. 25, nr 6, s. 2191-2205Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Network Function Virtualization (NFV) is an emerging technology to consolidate network functions onto high volume storages, servers and switches located anywhere in the network. Virtual Network Functions (VNFs) are chained together to provide a specific network service, called Service Function Chains (SFCs). Regarding to Quality of Service (QoS) requirements and network features and states, SFCs are served through performing two tasks: VNF placement and link embedding on the substrate networks. Reducing deployment cost is a desired objective for all service providers in cloud/edge environments to increase their profit form demanded services. However, increasing resource utilization in order to decrease deployment cost may lead to increase the service latency and consequently increase SLA violation and decrease user satisfaction. To this end, we formulate a multi-objective optimization model to joint VNF placement and link embedding in order to reduce deployment cost and service latency with respect to a variety of constraints. We, then solve the optimization problem using two heuristic-based algorithms that perform close to optimum for large scale cloud/edge environments. Since the optimization model involves conflicting objectives, we also investigate pareto optimal solution so that it optimizes multiple objectives as much as possible. The efficiency of proposed algorithms is evaluated using both simulation and emulation. The evaluation results show that the proposed optimization approach succeed in minimizing both cost and latency while the results are as accurate as optimal solution obtained by Gurobi (5%).

    Ladda ner fulltext (pdf)
    fulltext
  • 7.
    Khoshkholghi, Mohammad Ali
    et al.
    Karlstads universitet, Fakulteten för hälsa, natur- och teknikvetenskap (from 2013), Institutionen för matematik och datavetenskap (from 2013).
    Taheri, Javid
    Karlstads universitet, Fakulteten för hälsa, natur- och teknikvetenskap (from 2013), Institutionen för matematik och datavetenskap (from 2013).
    Bhamare, Deval
    Karlstads universitet, Fakulteten för hälsa, natur- och teknikvetenskap (from 2013), Institutionen för matematik och datavetenskap (from 2013).
    Kassler, Andreas
    Karlstads universitet, Fakulteten för hälsa, natur- och teknikvetenskap (from 2013), Institutionen för matematik och datavetenskap (from 2013).
    Optimized Service Chain Placement Using Genetic Algorithm2019Ingår i: Proceedings of the 2019 IEEE Conference on Network Softwarization NetSoft 2019, Unleashing the Power of Network Softwarization / [ed] Christian Jacquenet, Filip De Turck, Prosper Chemouil, Flavio Esposito, Olivier Festor, Walter Cerroni, Stefano Secci, IEEE, 2019Konferensbidrag (Refereegranskat)
    Abstract [en]

    Network Function Virtualization (NFV) is anemerging technology to consolidate network functions onto highvolume storages, servers and switches located anywhere in thenetwork. Virtual Network Functions (VNFs) are chainedtogether to provide a specific network service. Therefore, aneffective service chain placement strategy is required tooptimize the resource allocation and consequently to reduce theoperating cost of the substrate network. To this end, we proposefour genetic-based algorithms using roulette wheel andtournament selection techniques in order to place service chainsconsidering two different placement strategies. Since mappingof service chains sequentially (One-at-a-time strategy) may leadto suboptimal placement, we also propose Simultaneous strategythat places all service chains at the same time to improveperformance. Our goal in this work is to reduce deployment costof VNFs while satisfying constraints. We consider Geantnetwork as the substrate network along with its characteristicsextracted from SndLib. The proposed algorithms are able toplace service chains with any type of service graph. Theperformance benefits of the proposed algorithms arehighlighted through extensive simulations.

    Ladda ner fulltext (pdf)
    fulltext
  • 8.
    Langlet, Jonatan
    et al.
    Karlstads universitet, Fakulteten för hälsa, natur- och teknikvetenskap (from 2013), Institutionen för matematik och datavetenskap (from 2013).
    Kassler, Andreas
    Karlstads universitet, Fakulteten för hälsa, natur- och teknikvetenskap (from 2013), Institutionen för matematik och datavetenskap (from 2013).
    Bhamare, Deval
    Karlstads universitet, Fakulteten för hälsa, natur- och teknikvetenskap (from 2013), Institutionen för matematik och datavetenskap (from 2013).
    Towards Neural Network Inference on Programmable Switches2019Konferensbidrag (Refereegranskat)
  • 9.
    Vestin, Jonathan
    et al.
    Karlstads universitet, Fakulteten för hälsa, natur- och teknikvetenskap (from 2013), Institutionen för matematik och datavetenskap (from 2013).
    Kassler, Andreas
    Karlstads universitet, Fakulteten för hälsa, natur- och teknikvetenskap (from 2013), Institutionen för matematik och datavetenskap (from 2013).
    Bhamare, Deval
    Karlstads universitet, Fakulteten för hälsa, natur- och teknikvetenskap (from 2013), Institutionen för matematik och datavetenskap (from 2013).
    Grinnemo, Karl-Johan
    Karlstads universitet, Fakulteten för hälsa, natur- och teknikvetenskap (from 2013), Institutionen för matematik och datavetenskap (from 2013).
    Andersson, Jan-Olof
    Karlstads universitet.
    Pongracz, Gergely
    Ericsson AB, HUN.
    Programmable Event Detection for In-Band Network Telemetry2019Ingår i: Proceeding of the 2019 IEEE 8th International Conference on Cloud Networking, CloudNet 2019, IEEE, 2019, artikel-id 9064137Konferensbidrag (Refereegranskat)
    Abstract [en]

    In-Band Network Telemetry (INT) is a novel framework for collecting telemetry items and switch internal state information from the data plane at line rate. With the suppor programmable data planes and programming language P4,switches parse telemetry instruction headers and determine which telemetry items to attach using custom metadata. At the network edge, telemetry information is removed and the original packets are forwarded while telemetry reports are sent to a distributed stream processor for further processing by a network monitoring platform. In order to avoid excessive load on the stream processor, telemetry items should not be sent for each individual packet but rather when certain events are triggered. In this paper, we develop a programmable INT event detection mechanism in P4 that allows customization of which events to report to the monitoring system, on a per-flow basis, from the control plane. At the stream processor, we implement a fast INT report collector using the kernel bypass technique AF XDP, which parses telemetry reports and streams them to a distributed Kafka cluster, which can apply machine learning, visualization and further monitoring tasks. In our evaluation, we use realworld traces from different data center workloads and show that our approach is highly scalable and significantly reduces the network overhead and stream processor load due to effective event pre-filtering inside the switch data plane. While the INT report collector can process around 3 Mpps telemetry reports per core, using event pre-filtering increases the capacity by 10-15x.

    Ladda ner fulltext (pdf)
    fulltext
1 - 9 av 9
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • apa.csl
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf