Change search
Refine search result
1 - 9 of 9
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Enefalk, Åsa
    Karlstad University, Faculty of Health, Science and Technology (starting 2013), Department of Environmental and Life Sciences.
    Effects of fine woody debris on juvenile brown trout (Salmo trutta) and drifting invertebrates2014Licentiate thesis, comprehensive summary (Other academic)
    Abstract [en]

    In boreal forest streams, woody debris is an important habitat component. Stream invertebrates and salmonids such as brown trout benefit from in-stream wood. The studies presented in this thesis explore how drifting stream invertebrates respond to addition of fine woody debris, and how young-of-the-year (0+) brown trout behave in habitats with and without fine woody debris. The first paper reports results from a field experiment where fine woody debris was added to streams, and invertebrate drift was measured in order to detect impacts of the fine woody debris on drift density, biomass and taxon diversity. In the end of the season, the fine woody debris-affected drift samples showed higher density, biomass and taxon diversity than the control samples. In the second paper, I describe effects of fine woody debris on 0+ brown trout, studied in laboratory stream channels. Trout were tested in habitats without fine woody debris, with an intermediate fine woody debris density, and with a high fine woody debris density. Swimming activity and foraging time were significantly lower when fine woody debris was present than when it was absent. More time was spent sheltering at the high fine woody debris density than at the intermediate one. The increasing exploitation of fine woody debris for biofuel purposes should be considered in relation to the effects on brown trout and stream invertebrate habitat.

  • 2.
    Enefalk, Åsa
    Karlstad University, Faculty of Health, Science and Technology (starting 2013), Department of Environmental and Life Sciences.
    Fine stream wood: effects on drift and brown trout (Salmo trutta) growth and behaviour2016Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    Stream ecosystems and their riparian zones have previously been regarded as two different ecosystems, linked through numerous reciprocal subsidies. Today, ecologists agree that the stream and the riparian zone should be regarded as one system, the stream-riparian ecosystem, which is characterised largely by the subsidies between land and water. The terrestrial subsidies to the stream affect stream-living biota in several ways, some of which are well-known while others less so. The input of wood to the stream from the riparian zone is believed to play an important role in the population dynamics of stream-living fish. In this doctoral thesis, I explore effects of fine stream wood (FW, <10 cm diameter) on wild stream-living young-of-the-year brown trout (Salmo trutta) by reporting and discussing results from laboratory, semi-natural and field experiments. My results show that the local density of drifting prey is higher in the presence of FW than in its absence, and also that young-of-the-year brown trout decrease their diurnal foraging time and prey capture success when FW is added to their habitat. I show that trout decrease their swimming activity in the presence of FW, aggregate in FW bundles, and have lower growth rates than trout without FW access. Also, the degree of sheltering in FW bundles was higher during day than at night in a study performed at low water temperatures; moreover, the presence of an ectothermic nocturnal predator (burbot, Lota lota) did not affect the degree of sheltering in FW bundles by trout. Taken together, my results indicate that young-of-the-year brown trout with access to FW bundles spend considerable amounts of time sheltering in the FW, and by doing so they miss the opportunity for higher growth and foraging rates outside of the shelter. The most probable explanation for this behaviour is that growth is traded off against survival, i.e., the predation risk is higher outside of the shelter.

  • 3.
    Enefalk, Åsa
    et al.
    Karlstad University, Faculty of Health, Science and Technology (starting 2013), Department of Environmental and Life Sciences.
    Bergman, Eva
    Karlstad University, Faculty of Health, Science and Technology (starting 2013), Department of Environmental and Life Sciences.
    Effect of fine wood on juvenile brown trout behaviour in experimental stream channels2016In: Ecology of Freshwater Fish, ISSN 0906-6691, E-ISSN 1600-0633, Vol. 25, no 4, p. 664-673Article in journal (Refereed)
    Abstract [en]

    In-stream wood can increase shelter availability and prey abundance for stream-living fish such as brown trout, Salmo trutta, but the input of wood to streams has decreased in recent years due to harvesting of riparian vegetation. During the last decades, fine wood (FW) has been increasingly used for biofuel, and the input of FW to streams may therefore decrease. Although effects of in-stream FW have not been studied as extensively as those of large wood (LW), it is probably important as shelter for small-sized trout. In a laboratory stream experiment, we tested the behavioural response of young-of-the-year wild brown trout to three densities of FW, with trout tested alone and in groups of four. Video recordings were used to measure the proportion of time allocated to sheltering, cruising and foraging, as well as the number of aggressive interactions and prey attacks. Cruising activity increased with decreasing FW density and was higher in the four-fish groups than when fish were alone. Foraging decreased and time spent sheltering in FW increased with increasing FW density. Our study shows that juvenile trout activity is higher in higher fish densities and that trout response to FW is related to FW density and differs from the response to LW as reported by others. © 2015 John Wiley & Sons A/S.

  • 4.
    Enefalk, Åsa
    et al.
    Karlstad University, Faculty of Social and Life Sciences, Department of Biology.
    Bergman, Eva
    Karlstad University, Faculty of Social and Life Sciences, Department of Biology.
    Effects of fine wood addition on invertebrate drift in boreal forest streamsManuscript (preprint) (Other academic)
    Abstract [en]

    Fine woody debris (FWD) is a key habitat component for stream-living organisms, but there have been few tests of its importance for macroinvertebrate drift in boreal forest streams. We experimentally investigated the effect of FWD addition on the drift fauna at seven sites in four boreal forest streams, from early June to mid-August 2011. This was done by anchoring bundles of FWD at each site and measuring drift upstream (within site control) and downstream of each bundle. We hypothesized that addition of FWD would increase drift density and biomass of stream invertebrates as well as drift taxon richness. Variation between sites was high, with site-specific minimum values of drift biomass of 0.2 - 4.1 mg wet mass/100 m3 and maximum values of 3.9 - 41.7 mg/100 m3. Despite this variation, there was a significant increase in total aquatic drift density and biomass 8 to 10 weeks after wood addition. Aquatic taxon richness in the drift also increased significantly after FWD addition. This study shows for the first time that FWD can increase drifting invertebrate density, biomass and taxon diversity in small boreal forest streams.

  • 5.
    Enefalk, Åsa
    et al.
    Karlstad University, Faculty of Health, Science and Technology (starting 2013), Department of Environmental and Life Sciences.
    Bergman, Eva
    Karlstad University, Faculty of Health, Science and Technology (starting 2013), Department of Environmental and Life Sciences.
    Effects of fine wood on macroinvertebrate drift in four boreal forest streams2016In: Hydrobiologia, ISSN 0018-8158, E-ISSN 1573-5117, Vol. 765, no 1, p. 317-327Article in journal (Refereed)
    Abstract [en]

    Most studies of stream wood have focused on pieces a parts per thousand yen0.1 m diameter. However, this approach may overlook an important feature of small streams, where wood < 0.1 m can constitute the majority of wood pieces. We examined the effect of fine wood (FW) on local drift of stream macroinvertebrates. The study was carried out at seven sites in four boreal forest streams, from early June to mid-August 2011. This was done by anchoring bundles of FW at each site and measuring drift upstream and downstream of each bundle. We hypothesized that FW would increase drift density, biomass and diversity of aquatic invertebrates. Ten weeks after FW addition, aquatic drift density was higher downstream than upstream of FW bundles, while drift biomass and drift diversity did not differ significantly downstream and upstream of FW.

  • 6.
    Enefalk, Åsa
    et al.
    Karlstad University, Faculty of Health, Science and Technology (starting 2013), Department of Environmental and Life Sciences.
    Bergman, Eva
    Karlstad University, Faculty of Social and Life Sciences, Department of Biology.
    Juvenile brown trout response to fine woody debris in experimental stream channelsManuscript (preprint) (Other academic)
    Abstract [en]

    Changes in riparian vegetation due to forest harvesting may affect the input of fine woody debris, an important structural element, to streams. Woody debris has been shown to benefit trout populations. In-stream fine woody debris (FWD) has not been studied as extensively as large woody debris, but is probably important to smaller-sized trout. In a laboratory stream experiment we tested young-of-the-year wild brown trout, Salmo trutta, responses to three densities of fine woody debris (FWD). The trout were tested as singletons and four together. Swimming activity increased with increasing fish density and decreasing FWD density. Foraging decreased and time spent in FWD increased with increasing FWD density. Aggressiveness was lowest in intermediate FWD density. Our study shows that FWD impact on trout is related to fish rank, fish density and FWD density, and that juvenile trout response to fine WD is different from the response to large WD reported by others.

  • 7.
    Enefalk, Åsa
    et al.
    Karlstad University, Faculty of Health, Science and Technology (starting 2013), Department of Environmental and Life Sciences (from 2013).
    Huusko, Ari
    National Resources Institute, Finland.
    Louhi, Pauliina
    University of Oulu, Finland.
    Bergman, Eva
    Karlstad University, Faculty of Health, Science and Technology (starting 2013), Department of Environmental and Life Sciences (from 2013).
    Fine stream wood decreases growth of juvenile brown trout (Salmo trutta)2019In: Environmental Biology of Fishes, ISSN 0378-1909, E-ISSN 1573-5133, Vol. 102, no 5, p. 759-770Article in journal (Refereed)
    Abstract [en]

    In this study, the growth rate, gut fullness, diet composition and spatial distribution of brown trout was compared between artificial channels with and without fine wood (FW). Access to FW resulted in significantly lower brown trout growth rates over the study period from late summer to early winter as water temperatures declined from 17 °C to 1 °C. Access to FW resulted in minor differences in occurrence of the most common taxa found in brown trout diets, except for chironomid larvae which were found in c. 60% of the brown trout guts from control treatments but in only 30% of the guts from FW treatments in early winter. Diet consisted primarily of case-bearing and free-living Trichoptera larvae, Asellus, chironomid and Ephemeroptera larvae. Brown trout gut fullness was not significantly affected by access to FW bundles. Brown trout aggregated among FW but were more evenly distributed in channels lacking it. Our results suggest that juvenile brown trout use FW as a shelter at a wide range of water temperatures, and that this behaviour may result in reduced growth rates during their first fall and the onset of their first winter. We also show that prey availability and the composition of brown trout diet changes from late summer to early winter and that FW has a small but significant effect on brown trout diet composition.

  • 8.
    Enefalk, Åsa
    et al.
    Karlstad University, Faculty of Health, Science and Technology (starting 2013), Department of Environmental and Life Sciences (from 2013).
    Watz, Johan
    Karlstad University, Faculty of Health, Science and Technology (starting 2013), Department of Environmental and Life Sciences (from 2013).
    Greenberg, Larry
    Karlstad University, Faculty of Health, Science and Technology (starting 2013), Department of Environmental and Life Sciences (from 2013).
    Bergman, Eva
    Karlstad University, Faculty of Health, Science and Technology (starting 2013), Department of Environmental and Life Sciences (from 2013).
    Winter sheltering by juvenile brown trout (Salmo trutta): Effects of stream wood and an instream ecothermic predator2017In: Freshwater Biology, ISSN 0046-5070, E-ISSN 1365-2427, Vol. 62, no 1, p. 111-118Article in journal (Refereed)
    Abstract [en]

    In boreal streams, juvenile salmonids spend substantial amounts of time sheltering in the streambed and in stream wood, presumably as a means of protection against the physical environment and from terrestrial endothermic predators. Relatively little is known about sheltering by salmonids in response to instream ectothermic predators.We tested the effects of burbot (Lota lota) on the winter sheltering behaviour of PIT-tagged 0+ brown trout (Salmo trutta) in daylight and darkness. Sheltering in the streambed by trout was studied in the presence and absence of fine wood bundles.We found that the use of streambed and fine wood was lower in darkness than in daylight. Availability of fine wood significantly decreased sheltering in the streambed, and this effect was more pronounced in daylight than in darkness. The presence of a burbot significantly decreased sheltering in the streambed, had no effect on use of fine wood and resulted in a higher number of exposed trout.Our results indicate that juvenile brown trout decrease streambed sheltering in response to a burrowing, ectothermic predator.

  • 9.
    Watz, Johan
    et al.
    Karlstad University, Faculty of Health, Science and Technology (starting 2013), Department of Environmental and Life Sciences (from 2013).
    Bergman, Eva
    Karlstad University, Faculty of Health, Science and Technology (starting 2013), Department of Environmental and Life Sciences (from 2013).
    Calles, Olle
    Karlstad University, Faculty of Health, Science and Technology (starting 2013), Department of Environmental and Life Sciences (from 2013).
    Enefalk, Åsa
    Karlstad University, Faculty of Health, Science and Technology (starting 2013), Department of Environmental and Life Sciences (from 2013).
    Gustafsson, Stina
    Karlstad University, Faculty of Health, Science and Technology (starting 2013), Department of Environmental and Life Sciences (from 2013).
    Hagelin, Anna
    Karlstad University, Faculty of Health, Science and Technology (starting 2013), Department of Environmental and Life Sciences (from 2013).
    Nilsson, P. Anders
    Karlstad University, Faculty of Health, Science and Technology (starting 2013), Department of Environmental and Life Sciences (from 2013).
    Norrgård, Johnny
    Karlstad University, Faculty of Health, Science and Technology (starting 2013), Department of Environmental and Life Sciences (from 2013). Fortum generation.
    Nyqvist, Daniel
    Karlstad University, Faculty of Health, Science and Technology (starting 2013), Department of Environmental and Life Sciences (from 2013).
    Österling, Martin
    Karlstad University, Faculty of Social and Life Sciences, Department of Biology.
    Piccolo, John J.
    Karlstad University, Faculty of Health, Science and Technology (starting 2013), Department of Environmental and Life Sciences (from 2013).
    Schneider, Lea Dominique
    Karlstad University, Faculty of Health, Science and Technology (starting 2013), Department of Environmental and Life Sciences (from 2013).
    Greenberg, Larry
    Karlstad University, Faculty of Social and Life Sciences, Department of Biology.
    Jonsson, Bror
    Karlstad University, Faculty of Health, Science and Technology (starting 2013), Department of Environmental and Life Sciences (from 2013). Norsk institutt for naturforskning, Oslo.
    Ice cover alters the behavior and stress level of brown trout Salmo trutta2015In: Behavioral Ecology, ISSN 1045-2249, E-ISSN 1465-7279, Vol. 26, no 3, p. 820-827Article in journal (Refereed)
    Abstract [en]

    Surface ice in rivers and lakes buffers the thermal environment and provides overhead cover, protecting aquatic animals from terrestrial predators. We tested if surface ice influenced the behavior (swimming activity, aggressive encounters, and number of food items eaten) and stress level (coloration of eyes and body) of stream-living brown trout Salmo trutta at temperatures of 3–4 °C in indoor experimental flumes. We hypothesized that an individual’s resting metabolic rate (RMR, as measured by resting ventilation rate) would affect winter behavior. Therefore, groups of 4 trout, consisting of individuals with high, low, or mixed (2 individuals each) RMR, were exposed to experimental conditions with or without ice cover. Ice cover reduced stress responses, as evaluated by body coloration. Also, trout in low RMR groups had a paler body color than those in both mixed and high RMR groups. Trout increased their swimming activity under ice cover, with the highest activity found in high RMR groups. Ice cover increased the number of aggressive encounters but did not influence the number of drifting food items taken by each group. In mixed RMR groups, however, single individuals were better able to monopolize food than in the other groups. As the presence of surface ice increases the activity level and reduces stress in stream-living trout, ice cover should influence their energy budgets and production. The results should be viewed in light of ongoing global warming that reduces the duration of ice cover, especially at high latitudes and altitudes.

1 - 9 of 9
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf