This study conducted a comparative assessment of the gasification performances of torrefied and untorrefied bagasse with emphasis on feed size, gasifier design and operating conditions that would influence gasification efficiency. Torrefaction greatly improved the characteristics of bagasse and had significant impact on its gasification performance. The gasifier design parameters studied were throat angle and throat diameter. Temperature of input air and feed input were the gasifier operating conditions examined in the course of the gasification processes of both torrefied and untorrefied bagasse. These parameters were considered the most critical operating parameters that affect gasifier performance and, correlation between the parameters was established in the course of gasification. The results obtained showed higher gasification efficiency for torrefied bagasse in comparison to untorrefied bagasse under varied conditions of gasification, which was attributed mainly to changes in the characteristics of the torrefied material.
In a heat pump dishwasher, the whole dishwasher with the cabinet, dishware and process water is the heat sink, while a water tank, whose contents will freeze, is the heat source. The aim of the experimental concept study presented here was to evaluate a new drying method for a heat pump dishwasher. In this method, the drying of the dishware occurs as a fan circulates humid air in a closed system in which the water on the dishware evaporates inside the warm dishwasher cabinet and then condenses on a cold surface of the frozen water tank. The evaluation of drying performance was based on the European standard EN50242, which considers visible water drops left on the dishware after a completed dishwashing cycle. The results showed that this new closed drying method was more energy efficient compared to an existing open drying method, and that the drying start temperature and the drying time had a significant effect on the drying performance. Its lower electricity consumption and the fact that it does not vent humid air into the kitchen gives this heat pump dishwasher a competitive advantage over dishwashers using an open drying method.
For competitive purposes, manufacturers of household appliances need to produce appliances that use less electricity. One way of doing this for a dishwasher is to add a heat pump system. Previous studies using R134a as refrigerant have shown that the addition of a heat pump can reduce total electricity consumption by about 24%. This paper reports on the use of a capillary tube in a heat pump dishwasher during the transient heating period. Working with an available compressor, the mass of R600a and the length of a 0.9 mm capillary tube were varied in order to find the configuration with the lowest electricity consumption. Three methods of calculating the length of the capillary tube were used to determine five lengths for evaluation. The results show that using a single capillary tube throughout the transient heating period yields similar electricity consumption to a variable expansion device which occurred by switching the capillary tube between two or three different lengths during the heating period.
Electricity usage by a household dishwasher can be reduced by using a heat pump system to heat the dishwasher cabinet, dishware and washing water. The evaporator obtains the energy from an energy storage unit which consists of a container filled with water which freezes to ice. The majority of the heat transfer from the energy storage to the evaporator occurs when ice is created in the energy storage unit. A transient simulation model of a dishwasher with a heat pump system was developed and compared to an experimental setup with good agreement. A simulation study of the compressor cylinder volume and the compressor operating time was performed. The results showed a 24% reduction in total electricity use compared to a dishwasher cycle using a traditional electric element.
In the interests of competitiveness, manufactures of tumble dryers are seeking to reduce both their electricity use and the drying time. This study examines how the cylinder volume of the compressor and the total heat transfer of the condenser influence the drying time and electricity use in a heat pump tumble dryer. A transient simulation model was developed and compared to an experimental set-up with good similarity. The simulations show that increasing the cylinder volume of the compressor by 50% decreases the drying time by 14% without using more electricity.
In this thesis, I discuss experiences from designing, building and evaluating two research plants, which use circulating, atmospheric pressure superheated steam as drying medium for drying sawdust in a fluidized bed. The increased use of pellets has created a demand for new drying equipment at the Swedish pellet plants. The underlying cause is that almost all of the available dried material, such as wood shavings, is already in use. The remaining biofuel materials, primarily wet sawdust need drying before entering the pellet process. The primary demands on the drying process were an uncomplicated design and efficient energy use. A key aim was to improve the drying technique used in the Swedish wood fuel system with specially interest on the control system. Sawdust has been tested in both a full scale and a laboratory scale dryers. The tests were done in a spouted bed. The product of the steam mass flow and the enthalpy difference limits the drying capacity. The tests showed that it is possible to use the temperature after the dryer as a control parameter for the outgoing moisture content in a spouted bed dryer. The results and conclusions can be very useful when designing a similar full scale drying system.
Sverige är inte längre världsledande som pelletsproducent. USA producerar allra mest pellets i världen. Kanada och Ryssland producerar också allt mer pellets. Ingen av dessa länder har någon omfattande inhemsk konsumtion. I stort sett all pellets exporteras och det sker huvudsakligen till Europa. Sannolikt kommer det att leda till att priset på pellets i Europa sjunker, med följd att lönsamheten för svenska pelletsproducenter minskar.
In 2011, the total consumption of pellets in Sweden amounted to 1.9 million tons, which represents an energy value of 9 TWh. The pellets are used in large-scale as well as in small-scale applications, and increased demands on pellet quality are likely to force pellet producers to improve on the pellet properties. One way of increasing pellet quality is by using additives. The purpose of this article, therefore, is to examine kraft lignin as an additive. Pelletswere produced in a small industrial pellet press located at KarlstadUniversity, Karlstad, Sweden, and 1–4% of kraft lignin was added to the pellets. The results indicate that the addition of an increased amount of kraft lignin to the pellets increases their mechanical durability and their lengths. The results also indicate that dry kraft lignin yields pellets with higher durability as compared to wet kraft lignin. The energy demand was unaffected by the increased use of kraft lignin. The general results presented in this paper are useful for producers of lignin, pellet producers and end-users of pellets, who are interested in developing their products and/or improving the production processes.
Further increasing the production of processed biofuel also increases the demands on drying capacity. With the aim of increasing the heat capacity flow, experimental tests have been performed on the process of drying sawdust in a continuous spouted bed dryer with nine different draft tube designs. The results showed that a draft tube with an increased length and an increased disengagement height decreased the dry substances' flow rate throughout the dryer. The results also showed that the mass of the material in the dryer was approximately the same in all the tests. This means that the draft tubes, no matter their size, do not influence the amount of material in the dryer.
Spouted bed drying technology shows promising results for the drying of unscreened sawdust in superheated steam. In this paper, the experiences from designing, running and evaluating two spouted bed continuous feed dryers are presented. Stable running conditions and drying results have been achieved. This has been particularly important for sawdust that will be compressed into pellets or briquettes. The spouted bed superheated steam dryer also shows high potential for energy efficient integration into sawmills. Our recommendation is thus, to use the outlet steam temperature as the control parameter for the outlet moisture content. A drying rate above and one below the fibre saturation level, can be identified. Visual observations through the viewing glass in the drying zone in both the dryers clearly showed that not all of the material participated in the spout at all times; there were, however, no indications of dead zones. A heat transfer analysis indicated that only about 70% of the surface area of the material was in thermal contact with the steam. This paper sums up the experiences regarding drying properties, control and system properties obtained when sawdust is dried using superheated steam as the drying medium. Further work on standardised dryers in series or in parallel is necessary to increase the capacity in the spouted bed dryer.
The use of wood fuel pellets has increased worldwide in recent years, and pellet producers conclude that the lack of drying capacity is a barrier to increased production. In this study, we develop a concept of two different dryers called the two-step drying technique. The aim is to show the potential for increasing the drying capacity and improving energy efficiency when introducing a second dryer into the pellet plant. The study is theoretical and based on an industrial packed moving bed dryer. It shows that the drying capacity increased by 22% when a pneumatic second dryer was used.
Solid fuel for heating is an important product, and for sustainability reasons, it is important to replace nonrenewable fuels with renewable resources. This entails that the raw material base for pellet production has to increase. A broader spectrum of materials for pelleting involves variation in biomass substances. This variation, due to lack of knowledge, limits the possibilities to increase the pellet production using new raw materials. In this study, pellets were produced with a single pellet press from 16 different pure biomass substances representing cellulose, hemicellulose, other polysaccharides, protein, lignin, and extractives, and five different wood species, representing softwoods and hardwoods. All pellets were analyzed for the work required for compression and friction, maximum force needed to overcome the backpressure, pellet hardness, solid density, and moisture uptake. The results showed that the hardest pellets were produced from the group of celluloses, followed by rice xylan and larch arbinogalactan. The weakest pellets were from the group of mannans. Conclusions are that the flexible polysaccharides have a greater impact on the pelletizing process than previously known, and that the differences between xylan and glucomannan may explain the difference in the behavior of pelletizing softwoods and hardwoods.
Food waste is a significant problem for environmental, economic and food security reasons. The retailer, food service and consumers have been recognised as the parts of the food supply chain where the possibility of reducing food waste is greatest in industrialised countries. In this study, primary data on fresh fruit and vegetables (FFV) waste collected through direct measurements in three large retail stores in Sweden were analysed from the perspectives of wasted mass, economic cost and climate impact. A method of measuring and calculating the economic cost of FFV waste was developed and includes the cost of wasted produce, the cost of personnel time for waste management and the cost of waste collection and disposal. The results show that seven FFV categories, which have been termed "hotspot categories", contributed to the majority of the waste, both in terms of wasted mass, economic cost and climate impact. The "hotspot categories" are apple, banana, grape, lettuce, pear, sweet pepper, and tomato. The cost benefit analysis conducted showed that it is economically wise to invest in more working time for employees in waste management to accomplish a reduction of wasted mass and climate impact without an economic loss for the store. These results are relevant for supporting the implementation of policies and initiatives aimed at food waste reduction at retail level.
Final dewatering in the production of dry creped tissue is performed by Yankee drying, which includes hot pressing followed by simultaneous contact and impingement drying. The present study models Yankee drying and compares simulation results to the data obtained from trials on a pilot tissue machine. It advances models published previously by the representations developed for the transport of heat in the pressing stage and for the heat transfer involved in the dehydration of the cylinder coating spray. The model predicts an average specific drying rate within 4% in the range of the experimental data used.