OSB sheathing-to-wood framing connection, as typically used in light-frame shear walls, was experimentally examined in a novel biaxial test setup with respect to possible path dependence of the load-displacement relation. The connection with an annular-ringed shank nail was loaded under displacement control following nine different displacement paths within the sheathing plane, which coincided at a number of points. In intersection points, resultant connection force, its orientation and work performed on the connection system to reach the specific point were calculated and compared. Evaluation of experiments revealed significant path dependence with respect to orientation of force resultants at path intersection points. However, magnitude of the forces and the work carried out showed relatively small dependence of the displacement path undertaken. Comparison of uniaxial connection tests with the European yield model demonstrated strong contribution of withdrawal resistance of the ringed shank nail to its lateral strength. Results of this type are a valuable basis to build better models when simulating such connections in wood structures.
In a multi-storey residential housing project comprising of four 8-storey timber buildings, the bottom storeybeing designed with concrete and storeys 2-8 in timber, the vertical relative displacement, the temperature and the relativehumidity (RH) along one vertical channel in the external wall of one building has been monitored. Measurements startedduring construction and presented herein are results of 6.5 years of in-situ measurements. Displacement data was monitoredstorey-by-storey, with a sampling frequency of 1 measurement every 10-60 minutes. In another of the four buildingsadditional temperature and relative humidity measurements have been ongoing for about 5.5 years. These temperature andRH measurements were performed at six different locations in the building, at each location in eight positions through theexterior wall with a sampling frequency of 1 measurement every 15 minutes. The results show that the total verticaldisplacement over six storeys after 6.5 years of service life is approximately 23 mm as a yearly average, and over the yearthe displacement varies from this value by approximately ±2 mm. The main cause for the relative displacement is thedecrease of moisture content in the wood material leading to shrinkage after completion of the building. The resultsobtained show also that the exterior wall design of the building behaves well in terms of not comprising a general risk fordamp or mould in the timber core of the external walls.
Four buildings with clt-panels in their load bearing structure were built at the block Limnologen in Växjö, Southern Sweden. Their architecture is an example of the new ar-chitecture possible with this building system. Properties of these new structures are sought, one of these being their relative vertical displacement over time. These displacements are measured continuously for six storeys, up to now for just over two years. So far, the total measured dis-placements have reached a maximum of 21.1 mm over the 17.95 meter measuring length. Annu-lar variations of the displacements corresponding to the varying climate may be observed in the data.
Nailed connections are commonly employed for connecting sheathings to the framing used in shear walls. Although many aspects of such connections have been investigated thoroughly within the research community generally, the effect the loading direction has on connections of this sort has been much less investigated. In the present study experimental tests were carried out for determining in detail the effects the loading has on different sheathing-to-framing connections. The results obtained indicated the degree of loading to which a nail fastened to an oriented strand board (OSB) sheathing is subjected to not be strongly affected by which of the two main loading directions is involved, but that the effects of loading direction are found to be much greater if the timber element in question is also included in the testing carried out. The dependency of the loading effect on the loading direction at different loading stages and for different directions - parallel to the fibres, perpendicular to them, at some angle between these two main directions - was investigated here.
The use of cross-laminated structural timber elementsis becoming increasingly popular. The number of layersvaries normally from three upwards. The structural performanceof five-layer cross-laminated timber elements was investigated.The five layers consisted of 19mm thick boards,laid successively at right angles to each other and gluedtogether with PU-adhesive, layers 1, 3 and 5 lying in onedirection and layers 2 and 4 in the other. The stiffness andstrength of four cross-laminated timber elements (4955mmlong, 1250mm wide and 96mm thick) were studied duringin-plane bending. Two of the elements were first partitionedinto two parts that were reconnected in two different waysprior to testing. The influence of the way in which the crosslaminatedtimber elements were reconnected was studied,the behaviour observed being compared with the test resultsfor the unpartitioned specimens with respect to both strengthand stiffness. The experimental tests performed showed thecross-laminated timber elements to possess a high degree ofstiffness and strength. There was also found to be a markeddifference in behaviour between the two different ways inwhich the elements were connected to each other. One of thetwo connecting methods studied, being of less good designbut earlier frequently used in Sweden, showed as expectedpoor structural performance, whereas the other one appliedas a safer alternative performed well.
Wood specimens to each of which alaminate of carbon fibre reinforcement polymers(FRP) was glued (creating a lap joint in each case)were loaded to failure. A total of 15 specimens ofthree types differing in the glued length (anchoragelength) of the FRP laminate (50, 150 and 250 mmrespectively) were tested, their strength, stiffness andstrain distribution being evaluated. Synchronizeddigital cameras (charge-coupled devices) used intesting enabled strain fields on surfaces they weredirected at during the loading procedure to bemeasured. These results were also evaluated bothanalytically on the basis of generalized Volkersentheory and numerically by use of the finite elementmethod. The lap joints showed a high level ofstiffness as compared with mechanical joints. A highdegree of accuracy in the evaluation of stiffness wasachieved through the use of the contact-free evaluationsystem. The load-bearing capacity of joints ofthis type was found to be dependent upon theanchorage length in a non-linear fashion. The experimental,analytical and numerical results were shownto be in close agreement with respect to the strengthand the strain distribution obtained.