Change search
Refine search result
1 - 2 of 2
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Adamczyk, Krzysztof
    et al.
    Department of Materials Science and Engineering, Trondheim, Norway.
    Søndenå, Rune
    Department for Solar Energy, IFE, Kjeller, Norway.
    Stokkan, Gaute
    Sintef Materials and Chemistry, Trondheim, Norway.
    Looney, Erin
    Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
    Jensen, Mallory
    Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
    Lai, Barry
    Advanced Photon Source, Argonne National Laboratory, Lemont, Illinois 60439, USA.
    Rinio, Markus
    Karlstad University, Faculty of Health, Science and Technology (starting 2013), Department of Engineering and Physics (from 2013).
    Di Sabatino, Marisa
    Department of Materials Science and Engineering, NTNU, A. Getz vei 2B, NO-7491 Trondheim, Norway.
    Recombination activity of grain boundaries in high-performance multicrystalline Si during solar cell processing2018In: Journal of Applied Physics, ISSN 0021-8979, E-ISSN 1089-7550, Vol. 123, no 5, p. 1-6, article id 055705Article in journal (Refereed)
    Abstract [en]

    In this work, we applied internal quantum efficiency mapping to study the recombination activity of grain boundaries in High Performance Multicrystalline Silicon under different processing conditions. Wafers were divided into groups and underwent different thermal processing, consisting of phosphorus diffusion gettering and surface passivation with hydrogen rich layers. After these thermal treatments, wafers were processed into heterojunction with intrinsic thin layer solar cells. Light Beam Induced Current and Electron Backscatter Diffraction were applied to analyse the influence of thermal treatment during standard solar cell processing on different types of grain boundaries. The results show that after cell processing, most random-angle grain boundaries in the material are well passivated, but small-angle grain boundaries are not well passivated. Special cases of coincidence site lattice grain boundaries with high recombination activity are also found. Based on micro-X-ray fluorescence measurements, a change in the contamination level is suggested as the reason behind their increased activity.

  • 2.
    Adamczyk, Krzysztof
    et al.
    Department of Materials Science and Engineering, Trondheim, Norway.
    Søndenå, Rune
    Department for Solar Energy, IFE, Kjeller, Norway.
    You, Chang Chuan
    Department for Solar Energy, IFE, Kjeller, Norway.
    Stokkan, Gaute
    Sintef Materials and Chemistry, Trondheim, Norway.
    Lindroos, Jeanette
    Karlstad University, Faculty of Health, Science and Technology (starting 2013), Department of Engineering and Physics (from 2013).
    Rinio, Markus
    Karlstad University, Faculty of Health, Science and Technology (starting 2013), Department of Engineering and Physics (from 2013).
    Di Sabatino, Marisa
    Department of Materials Science and Engineering, Trondheim, Norway.
    Recombination Strength of Dislocations in High-Performance Multicrystalline/Quasi-Mono Hybrid Wafers During Solar Cell Processing2018In: Physica Status Solidi (a) applications and materials science, ISSN 1862-6300, E-ISSN 1862-6319, Vol. 215, no 2, article id 1700493Article in journal (Refereed)
    Abstract [en]

    Wafers from a hybrid silicon ingot seeded in part for High Performance Multicrystalline, in part for a quasi-mono structure, are studied in terms of the effect of gettering and hydrogenation on their final Internal Quantum Efficiency.The wafers are thermally processed in different groups – gettered and hydrogenated. Afterwards, a low temperature heterojunction with intrinsic thin layer cell process is applied to minimize the impact of temperature. Such procedure made it possible to study the effect of different processing steps on dislocation clusters in the material using the Light Beam Induced Current technique with a high spatial resolution. The dislocation densities are measuredusing automatic image recognition on polished and etched samples. The dislocation recombination strengths are obtained by a correlation of the IQE with the dislocation density according to the Donolato model. Different clusters are compared after different process steps. The results show that for the middle of the ingot, the gettering step can increase the recombination strength of dislocations by one order of magnitude. A subsequent passivation with layers containing hydrogen can lead to a decrease in the recombination strength to levels lower than in ungettered samples.

1 - 2 of 2
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf