Change search
Refine search result
1 - 8 of 8
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    AlMotasem, Ahmed Tamer
    et al.
    Karlstad University, Faculty of Health, Science and Technology (starting 2013), Department of Engineering and Physics (from 2013). Assiut University, Egypt.
    Bergström, Jens
    Karlstad University, Faculty of Health, Science and Technology (starting 2013), Department of Engineering and Physics (from 2013).
    Gåård, Anders
    Karlstad University, Faculty of Health, Science and Technology (starting 2013), Department of Engineering and Physics (from 2013).
    Krakhmalev, Pavel
    Karlstad University, Faculty of Health, Science and Technology (starting 2013), Department of Engineering and Physics (from 2013).
    Holleboom, Thijs Jan
    Karlstad University, Faculty of Health, Science and Technology (starting 2013), Department of Engineering and Physics (from 2013).
    Tool microstructure impact on the wear behavior of ferrite iron during nanoscratching: An atomic level simulation2017In: Wear, ISSN 0043-1648, E-ISSN 1873-2577, Vol. 370-371, p. 39-45Article in journal (Refereed)
    Abstract [en]

    In the present work, molecular dynamics simulations were used to investigate the impact of the tool microstructure on the wear behavior of ferrite workpiece during nanoscratching. The tool microstructure was modified by varying the carbide (cementite) contents. The simulation results show that dislocations are the primary mechanism for plastic deformation of the workpiece material. It is found that total dislocation length varies significantly depending on the carbide content in the tool. Furthermore, other tribological phenomena were also observed to depend on the carbide contents. For example, the average value of frictional forces decreased while the normal force increases with increasing carbide contents, and hence the friction coefficient was decreased. Additionally, the shape and size of lateral and frontal pileups are lowered. The structural analysis of the pileup region reveals the loss of long range order and start of amorphisation. The temperature distribution of the pileup regions showed an increase of the pileup temperature when carbide is added into tool. The wear volume is considerably reduced when the carbide content increases. The average scratch hardness was found to decrease and the result was analyzed with the theoretical Taylor hardening model.

  • 2.
    Gåård, Anders
    et al.
    Karlstad University, Faculty of Technology and Science, Department of Mechanical and Materials Engineering.
    Hallbäck, Nils
    Karlstad University, Faculty of Technology and Science, Department of Mechanical and Materials Engineering.
    Krakhmalev, Pavel
    Karlstad University, Faculty of Technology and Science, Department of Mechanical and Materials Engineering.
    Bergström, Jens
    Karlstad University, Faculty of Technology and Science, Department of Mechanical and Materials Engineering. Karlstad University, Faculty of Technology and Science, Materials Science.
    Temperature effects on adhesive wear in dry sliding contacts2010In: Wear, ISSN 0043-1648, E-ISSN 1873-2577, Vol. 268, no 7-8, p. 968-975Article in journal (Refereed)
  • 3.
    Gåård, Anders
    et al.
    Karlstad University, Faculty of Technology and Science, Materials Science. Karlstad University, Faculty of Technology and Science, Department of Mechanical and Materials Engineering.
    Krakhmalev, Pavel
    Karlstad University, Faculty of Technology and Science, Materials Science. Karlstad University, Faculty of Technology and Science, Department of Mechanical and Materials Engineering.
    Bergström, Jens
    Karlstad University, Faculty of Technology and Science, Department of Mechanical and Materials Engineering. Karlstad University, Faculty of Technology and Science, Materials Science.
    Influence of tool steel microstructure on origin of galling initiation and wear mechanisms under dry sliding against carbon steel sheets2009In: Wear, ISSN 0043-1648, E-ISSN 1873-2577, Vol. 267, no 1-4, p. 387-393Article in journal (Refereed)
  • 4.
    Karlsson, Patrik
    et al.
    Karlstad University, Faculty of Health, Science and Technology (starting 2013), Department of Engineering and Physics.
    Gåård, Anders
    Karlstad University, Faculty of Health, Science and Technology (starting 2013), Department of Engineering and Physics.
    Krakhmalev, Pavel
    Karlstad University, Faculty of Health, Science and Technology (starting 2013), Department of Engineering and Physics.
    Influence of tool steel microstructure on friction and initial material transfer2014In: Wear, ISSN 0043-1648, E-ISSN 1873-2577, Vol. 319, no 1-2, p. 12-18Article in journal (Refereed)
    Abstract [en]

    An investigation was conducted to study the influence of tool steel microstructure on initial material transfer and friction. Two different powder metallurgy tool steels and an ingot cast tool material were tested in dry sliding against 1.4301, 1.4162, Domex 355 MC and Domex 700 MC sheet materials. It was found that tool steel hard phase heights influence initial material transfer and friction. The coefficient of friction increased with decreasing tool steel hard phase heights at 50 N normal load and initial material transfer occurred around protruding hard phases. At higher load of 500 N the sheet material adhered to both the tool steel matrix and hard phases. Coefficient of friction decreased with increasing proof strength of the sheet material at 500 N normal load.

  • 5.
    Karlsson, Patrik
    et al.
    Karlstad University, Faculty of Technology and Science, Department of Mechanical and Materials Engineering.
    Gåård, Anders
    Karlstad University, Faculty of Technology and Science, Department of Mechanical and Materials Engineering.
    Krakhmalev, Pavel
    Karlstad University, Faculty of Technology and Science, Department of Mechanical and Materials Engineering.
    Bergström, Jens
    Karlstad University, Faculty of Technology and Science, Department of Mechanical and Materials Engineering.
    Galling resistance and wear mechanisms for cold-work tool steels in lubricated sliding against high strength stainless steel sheets2012In: Wear, ISSN 0043-1648, E-ISSN 1873-2577, Vol. 286-287, p. 92-97Article in journal (Refereed)
    Abstract [en]

    Tool damage in sheet metal forming of stainless steel is of high concern for the forming industry. In the present work, ingot cast AISI D2 and advanced powder metallurgy tool steel (PM) cold-work tool steels were evaluated and ranked regarding wear mechanisms and galling resistance. Wear tests were performed using a slider-on-flat-surface (SOFS) tribometer in sliding against austenitic–ferritic (duplex) stainless steel sheets at different contact pressures in lubricated conditions. The best galling resistance was observed for the nitrogen alloyed PM tool steels. Abrasive scratching of the tool surfaces and transfer of sheet material due to adhesive wear were the main metal forming tool surface damage mechanisms. By increasing the hardness of one PM sheet metal forming tool grade, the galling resistance was enhanced.

  • 6.
    Krakhmalev, Pavel
    et al.
    Karlstad University, Faculty of Technology and Science, Materials Science. Karlstad University, Faculty of Technology and Science, Department of Mechanical and Materials Engineering.
    Bergström, Jens
    Karlstad University, Faculty of Technology and Science, Department of Mechanical and Materials Engineering. Karlstad University, Faculty of Technology and Science, Materials Science.
    Tribological behavior and wear mechanisms of MoSi2-base composites sliding against AA6063 alloy at elevated temperature2006In: Wear, ISSN 0043-1648, E-ISSN 1873-2577, Vol. 260, no 4-5, p. 450-457Article in journal (Refereed)
  • 7.
    Krakhmalev, Pavel
    et al.
    Karlstad University, Faculty of Technology and Science, Materials Science. Karlstad University, Faculty of Technology and Science, Department of Mechanical and Materials Engineering.
    Rodil, Adeva
    Bergström, Jens
    Karlstad University, Faculty of Technology and Science, Department of Mechanical and Materials Engineering. Karlstad University, Faculty of Technology and Science, Materials Science.
    Influence of microstructure on the abrasive edge wear of WC–Co hardmetals2007In: Wear, ISSN 0043-1648, E-ISSN 1873-2577, Vol. 263, no 1-6, p. 240-245Article in journal (Refereed)
  • 8.
    Mussa, Abdulbaset
    et al.
    Karlstad University, Faculty of Health, Science and Technology (starting 2013), Department of Engineering and Physics (from 2013).
    Krakhmalev, Pavel
    Karlstad University, Faculty of Health, Science and Technology (starting 2013), Department of Engineering and Physics (from 2013).
    Bergström, Jens
    Karlstad University, Faculty of Health, Science and Technology (starting 2013), Department of Engineering and Physics (from 2013).
    Sliding wear and fatigue cracking damage mechanisms in reciprocal and unidirectional sliding of high-strength steels in dry contact2019In: Wear, ISSN 0043-1648, E-ISSN 1873-2577, Vol. 444, article id 203119Article in journal (Refereed)
    Abstract [en]

    Rock drill components operate under tough contact conditions during rock drilling. Reciprocal and unidirectional motion under high contact stresses are the common contact conditions between interconnected components. It will result in component damage and often the observed surface damage of rock drill tools is due to wear and fatigue cracks. Nevertheless, the effects of the properties and structure of the mating materials on tribological performance, is not fully understood. The present study is dedicated to simulation and investigation of the wear mechanisms observed in reciprocal and unidirectional sliding of high strength steels for rock drill components. A high strength martensitic steel, 22NiCrMo12–F, commonly used in rock drills was tested in self-mating contact. Wear mechanisms were investigated by means of electron microscopy and wear damage was quantified by a 3D optical interferometer. Total damage, as a result of adhesive wear, severe plastic deformation and nucleation and propagation of fatigue cracks, was discussed in relation to test conditions and material properties. It was observed that the coefficient of friction decreased with increasing normal load. Moreover, the results showed that the type of motion had a significant influence on the worn volume and crack nucleation of the specimens in sliding contact. In addition, the reciprocal motion resulted in higher wear than unidirectional motion under the same test conditions.

1 - 8 of 8
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf