Change search
Refine search result
1 - 3 of 3
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Mousavi, S. Mahmoud
    et al.
    Aalto University, Finland.
    Paavola, Juha
    Aalto University, Finland.
    Reddy, J. N.
    Texas A&M University, USA.
    Variational approach to dynamic analysis of third-order shear deformable plates within gradient elasticity2015In: Meccanica (Milano. Print), ISSN 0025-6455, E-ISSN 1572-9648, Vol. 50, no 6, p. 1537-1550Article in journal (Refereed)
    Abstract [en]

    A variational approach based on Hamilton’s principle is used to develop the governing equations for the dynamic analysis of plates using the Reddy third-order shear deformable plate theory with strain gradient and velocity gradient. The plate is made of homogeneous and isotropic elastic material. The stain energy, kinetic energy, and the external work are generalized to capture the gradient elasticity (i.e., size effect) in plates modeled using the third-order shear deformation theory. In this framework, both strain and velocity gradients are included in the strain energy and kinetic energy expressions, respectively. The equations of motion are derived, along with the consistent boundary equations. Finally, the resulting third-order shear deformation (strain and velocity) gradient plate theory is specialized to the first-order and classical strain gradient plate theories.

  • 2.
    Muntean, Adrian
    University of Bremen.
    Concentration blow up in a two-phase non-equilibrium model with source term2007In: Meccanica (Milano. Print), ISSN 0025-6455, E-ISSN 1572-9648, Vol. 42, no 4, p. 409-411Article in journal (Refereed)
  • 3.
    Muntean, Adrian
    Technical University of Eindhoven, Netherlands.
    On the interplay between fast reaction and slow diffusion in the concrete carbonation process: A matched-asymptotics approach2009In: Meccanica (Milano. Print), ISSN 0025-6455, E-ISSN 1572-9648, Vol. 44, no 1, p. 35-46Article in journal (Refereed)
1 - 3 of 3
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf