Change search
Refine search result
1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Björström, Cecilia M.
    et al.
    Karlstad University, Faculty of Technology and Science, Department of Physics and Electrical Engineering.
    Nilsson, Svante
    Karlstad University, Faculty of Technology and Science, Department of Physics and Electrical Engineering.
    Magnusson, Kjell
    Karlstad University, Faculty of Technology and Science, Department of Physics and Electrical Engineering. Karlstad University, Faculty of Technology and Science, Materials Science.
    Moons, Ellen
    Karlstad University, Faculty of Technology and Science, Department of Physics and Electrical Engineering.
    Bernasik, Andrzej
    Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, Poland.
    Rysz, Jakub
    Institute of Physics, Jagiellonian University, Poland.
    Budkowski, Andrzej
    Institute of Physics, Jagiellonian University, Poland.
    Zhang, Fengling
    Department of Physics, Linköping University, Sweden.
    Inganäs, Olle
    Department of Physics, Linköping University, Sweden.
    Andersson, Mats R.
    Department of Materials and Surface Chemistry / Polymer Technology, Chalmers University of Technology, Gothenburg, Sweden.
    Influence of solvents and substrates on the morphology and the performance of low-bandgap polyfluorene:PCBM photovoltaic devices2006In: Proceedings of SPIE, the International Society for Optical Engineering, ISSN 0277-786X, E-ISSN 1996-756X, Vol. 6192, p. 61921X-Article in journal (Refereed)
    Abstract [en]

    Spin-coated thin films of poly[(9,9-dioctylfluorenyl-2,7-diyl)-co-5,5-(4',7'-di-2-thienyl-2',1',3'-benzothiadiazole)] (APFO-3) blended with [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) are used as the active material in polymer photovoltaic cells. Such blends are known for their tendency to phase separate during film formation. Tuning the morphology of the blend in a controlled way is one possible road towards higher efficiency. We studied the effect of adding chlorobenzene to chloroform-based blend solutions before spin-coating on the conversion efficiency of APFO-3:PCBM photodiodes, and related that to the lateral and vertical morphology of thin films of the blend. The lateral morphology is imaged by atomic force microscopy (AFM) and the vertical compositional profile is obtained by dynamic secondary ion mass spectrometry (SIMS). The profiles reveal compositional variations consisting of multilayers of alternating polymer-rich and PCBM-rich domains in the blend film spin-coated from chloroform. The vertical compositional variations are caused by surface-directed spinodal waves and are frozen in during the rapid evaporation of a highly volatile solvent. With addition of the low-vapour pressure solvent chlorobenzene, a more homogeneous vertical composition is found. The conversion efficiency for solar cells of this blend was found to be optimal for chloroform:chlorobenzene mixtures with a volume-ratio of 80:1. We have also investigated the role of the substrate on the morphology. We found that blend films spin-coated from chloroform solutions on PEDOT:PSS-coated ITO show a similar compositional structure as the films on silicon, and that changing the substrate from silicon to gold only affects the vertical phase separation in a region close to the substrate interface

1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf