Today, the world is faced with major challenges when dealing with environmental problems and their consequences. The most critical issue on a global scale has been identified as greenhouse gas (GHG) emissions that contribute to the enhanced greenhouse effect through elevated average temperatures around the globe. A large part of GHG emissions is linked to fossil-based electricity production. Within the EU, almost half of all electricity is produced by combustion of fossil fuels such as natural gas and coal. It is therefore of great importance that this type of production is phased out, but also that the consumption of electricity by consumers is reduced.
In the domestic appliances industry, continuous development towards more energy-efficient solutions has been happening in response to climate change threats and stiff competition in the global marketplace. In the field of dishwasher development, ASKO Appliances AB investigates the possibilities of reducing electricity consumption by their machines. A suggested solution is to supplement the machines with a heat pump for heating the wash water instead of only a conventional electrical element. Studies have shown that this method of water heating can reduce electricity consumption by up to 24%.
The solution means that a coil-shaped condenser is placed in the bottom-well of the machine to deliver heat to the bypassed water. In this work, focus is placed on the condenser unit in the heat pump system and its geometry, with the purpose of evaluating the possibilities for improved heat transfer to the water by simulating different geometries on the condenser. In this work, the COMSOL Multiphysics software is used to create a 3D model over the system and simulate different geometries and conditions. The model is validated by comparison with experimental data. Flow simulations evaluates the emitted power of the component when changing the diameter of the condenser, pipe diameter, and increased distance between the turns (pitch) and number of turns in the coil.
Results presented in this study show that it is possible to improve the condenser-performance in comparison to the original design, if the pipe diameter is increased. One alternative means that the number of turns on the condenser is maintained according to the original design and the diameter is increased by 3 mm, which generates a 22 % increase of heat transfer rate. A second option is to remove one turn on the condenser and increase the diameter by 4.5 mm, resulting in a 24% increased heat transfer rate.
The analysis of increasing the distance between the turns shows that the condenser’s heat transfer decreases as the distances increase. By analyzing the flow distribution around the condenser, it has been found that this effect occurs due to the nature of the outlet, which causes large areas with low velocities around the condenser. Discussion has been made on how this can be prevented and there is good potential to conduct further studies in the matter.