Change search
ReferencesLink to record
Permanent link

Direct link
Hopfield Neural Network for Simultaneous Job Scheduling and Data Replication in Grids
The University of Sydney, Australia.ORCID iD: 0000-0001-9194-010X
The University of Sydney, Sydney, Australia.
Department of Electrical and Computer Engineering, University of Luxembourg.
Department of Electrical Engineering, North Dakota State University, Fargo.
2013 (English)In: Future generations computer systems, ISSN 0167-739X, E-ISSN 1872-7115, Vol. 29, 1885-1900 p.Article in journal (Refereed) Published
Abstract [en]

This paper presents a novel heuristic approach, named JDS-HNN, to simultaneously schedule jobs and replicate data files to different entities of a grid system so that the overall makespan of executing all jobs as well as the overall delivery time of all data files to their dependent jobs is concurrently minimized. JDS-HNN is inspired by a natural distribution of a variety of stones among different jars and utilizes a Hopfield Neural Network in one of its optimization stages to achieve its goals. The performance of JDS-HNN has been measured by using several benchmarks varying from medium- to very-large-sized systems. JDS-HNN's results are compared against the performance of other algorithms to show its superiority under different working conditions. These results also provide invaluable insights into scheduling and replicating dependent jobs and data files as well as their performance related issues for various grid environments.

Place, publisher, year, edition, pages
Elsevier, 2013. Vol. 29, 1885-1900 p.
National Category
Computer Science
URN: urn:nbn:se:kau:diva-46074DOI: 10.1016/j.future.2013.04.020ISI: 000326613400002OAI: diva2:970868
Available from: 2016-09-14 Created: 2016-09-14 Last updated: 2016-10-06Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Taheri, Javid
In the same journal
Future generations computer systems
Computer Science

Search outside of DiVA

GoogleGoogle Scholar

Altmetric score

Total: 18 hits
ReferencesLink to record
Permanent link

Direct link