In this study, a numerical tool is introducedbased on thermodynamic and kinetic separation theoryfor validating the regeneration of monolithic rod columns after cutting their inlet sections. A long-used RP-18e monolithic column was deemed to be unfit for further coffee analysis because of poor separation performance. The columns brownish inlet section was physically removed with a lathe, leaving a clean white inlet section. The original and regenerated columns were extensively analyzed and compared using numerical tools for processing adsorption data. The perturbation peak method was used to measure the adsorption isotherm of phenol on the original and regenerated monolith and the adsorption energy distributions were calculated for identifying any change in the degree of heterogeneity. Although peak shapes improved considerably after regeneration, no significant differences were found in the detailed characterization of the processed adsorption data between the original column and the regenerated one. This indicates that the removal of a section of the monolithic bed can be undertaken without damaging the column and columns in which their inlet head sections are contaminated may still function with normal adsorption behavior. In addition, the combined thermodynamic and kinetic methodology could accurately be used to evaluate any regeneration method of columns.