Change search
ReferencesLink to record
Permanent link

Direct link
Iterative Learning Control of Fast Switching On/Off Valves in Digital Hydraulic Drives
Karlstad University, Faculty of Technology and Science, Department of Physics and Electrical Engineering.
2014 (English)Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesis
Abstract [en]

Time delays in control systems diminish performance or even cause instability. Additionally, inherent model errors occurring in model based control approaches yield undesired system behavior and further reduce performance. An example of such a system is the digital hydraulic radial piston motor where several cylinders actuated by valves contribute to the output torque. The systems complexity makes precise system modeling difficult and valves to actively control in- and outflow of the cylinders cause undesired delays.

In this work an iterative learning control(ler) (ILC) approach is presented to compensate model uncertainties of the higher level optimal controller and delays caused by the valves. Due to the use of on/off valves discrete inputs are considered. First a detailed valve model is derived for a solenoid on/off valve for the use in simulations. Missing parameters are estimated. The derived model and the estimated parameters accurately describe the valve response. Comparing the model response with measurement data shows this. Iterative learning control is then used to compensate delays and model errors of the system with binary control inputs, varying iterations length and changing reference trajectories. Simulations and hardware-in-the-loop (HIL) experiments show that the method can reliably compensate valve delays and to some extend model uncertainties.

Place, publisher, year, edition, pages
2014. , 99 p.
National Category
Control Engineering
Identifiers
URN: urn:nbn:se:kau:diva-31645OAI: oai:DiVA.org:kau-31645DiVA: diva2:703210
External cooperation
Bosch Rexroth AG
Subject / course
Electrical Engineering
Presentation
2014-01-17, 21E304, Karlstad University, SE-65188 Karlstad, 10:15 (English)
Supervisors
Examiners
Available from: 2014-03-11 Created: 2014-03-05 Last updated: 2014-03-11Bibliographically approved

Open Access in DiVA

No full text

By organisation
Department of Physics and Electrical Engineering
Control Engineering

Search outside of DiVA

GoogleGoogle Scholar

Total: 44 hits
ReferencesLink to record
Permanent link

Direct link