CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_upper_j_idt145",{id:"formSmash:upper:j_idt145",widgetVar:"widget_formSmash_upper_j_idt145",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:upper:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_upper_j_idt147_j_idt149",{id:"formSmash:upper:j_idt147:j_idt149",widgetVar:"widget_formSmash_upper_j_idt147_j_idt149",target:"formSmash:upper:j_idt147:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

The ZX-Calculus: A graphical calculus for multipartite qubit systemsPrimeFaces.cw("AccordionPanel","widget_formSmash_some",{id:"formSmash:some",widgetVar:"widget_formSmash_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_all",{id:"formSmash:all",widgetVar:"widget_formSmash_all",multiple:true});
function selectAll()
{
var panelSome = $(PrimeFaces.escapeClientId("formSmash:some"));
var panelAll = $(PrimeFaces.escapeClientId("formSmash:all"));
panelAll.toggle();
toggleList(panelSome.get(0).childNodes, panelAll);
toggleList(panelAll.get(0).childNodes, panelAll);
}
/*Toggling the list of authorPanel nodes according to the toggling of the closeable second panel */
function toggleList(childList, panel)
{
var panelWasOpen = (panel.get(0).style.display == 'none');
// console.log('panel was open ' + panelWasOpen);
for (var c = 0; c < childList.length; c++) {
if (childList[c].classList.contains('authorPanel')) {
clickNode(panelWasOpen, childList[c]);
}
}
}
/*nodes have styleClass ui-corner-top if they are expanded and ui-corner-all if they are collapsed */
function clickNode(collapse, child)
{
if (collapse && child.classList.contains('ui-corner-top')) {
// console.log('collapse');
child.click();
}
if (!collapse && child.classList.contains('ui-corner-all')) {
// console.log('expand');
child.click();
}
}
2013 (English)Independent thesis Basic level (degree of Bachelor), 10 credits / 15 HE creditsStudent thesis
##### Abstract [en]

##### Place, publisher, year, edition, pages

2013. , p. 59
##### Keywords [en]

categorical quantum mechanics, category theory, qubit systems, ZX-Calculus, diagrammatic calculus, quantum observables
##### National Category

Physical Sciences
##### Identifiers

URN: urn:nbn:se:kau:diva-29552OAI: oai:DiVA.org:kau-29552DiVA, id: diva2:656815
##### Subject / course

Physics
##### Educational program

Bachelor Programme in Physics , 180 hp
##### Presentation

2013-06-17, Karlstad, 10:03 (English)
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt465",{id:"formSmash:j_idt465",widgetVar:"widget_formSmash_j_idt465",multiple:true});
##### Supervisors

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt471",{id:"formSmash:j_idt471",widgetVar:"widget_formSmash_j_idt471",multiple:true});
##### Examiners

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt477",{id:"formSmash:j_idt477",widgetVar:"widget_formSmash_j_idt477",multiple:true}); Available from: 2013-10-29 Created: 2013-10-17 Last updated: 2013-10-29Bibliographically approved

In this thesis we will give a presentation of a graphical/diagrammatic calculus for quantum systems involving interacting quantum observables such as multi-partite systems of qubits, the ZX-Calculus. Unlike the Hilbert space formulation of quantum mechanics, the ZX-Calculus is based on category theory, more specically on the notion of a compact dagger symmetric monoidal category and as a consequence the graphical language associated with such a category is inherited by the calculus. This enables us to think about and deal with many calculations in quantum computation and information in a purely graphical and intuitive fashion. Although being formulated in a more general mathematical framework, huge parts of the Hilbert space formulation of quantum mechanics can be extracted from the ZX-calculus. In this thesis we will begin by giving a motivation for the need of such a calculus and then key concepts of category theory will be introduced in an intuitive manner in order to understand the ZX-calculus that will be presented afterwards. We then apply the calculus to'model' and describe certain quantum circuits and quantum teleportation.

urn-nbn$(function(){PrimeFaces.cw("Tooltip","widget_formSmash_j_idt1203",{id:"formSmash:j_idt1203",widgetVar:"widget_formSmash_j_idt1203",showEffect:"fade",hideEffect:"fade",showDelay:500,hideDelay:300,target:"formSmash:altmetricDiv"});});

CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_lower_j_idt1258",{id:"formSmash:lower:j_idt1258",widgetVar:"widget_formSmash_lower_j_idt1258",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:lower:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_lower_j_idt1259_j_idt1261",{id:"formSmash:lower:j_idt1259:j_idt1261",widgetVar:"widget_formSmash_lower_j_idt1259_j_idt1261",target:"formSmash:lower:j_idt1259:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});