Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Hopf algebras and Frobenius algebras in finite tensor categories
Karlstad University, Faculty of Technology and Science, Department of Physics and Electrical Engineering. (Matematisk modellering)ORCID iD: 0000-0003-4081-6234
Germany.
2012 (English)In: Highlights in Lie Algebraic Methods / [ed] Anthony Joseph, Anna Melnikov, Ivan Penkov, Basel: Birkhäuser Verlag, 2012, 189-203 p.Chapter in book (Refereed)
Abstract [en]

We discuss algebraic and representation theoretic structures in braided tensor categories C which obey certain finiteness conditions. Much interesting structure of such a category is encoded in a Hopf algebra H in C. In particular, the Hopf algebra H gives rise to representations of the modular group SL(2,Z) on various morphism spaces. We also explain how every symmetric special Frobenius algebra in a semisimple modular category provides additional structure related to these representations.

Place, publisher, year, edition, pages
Basel: Birkhäuser Verlag, 2012. 189-203 p.
Series
Progress in mathematics, ISSN 0743-1643 ; 295
National Category
Mathematics
Research subject
Mathematics
Identifiers
URN: urn:nbn:se:kau:diva-15462DOI: 10.1007/978-0-8176-8274-3ISI: 000322550200008ISBN: 978-0-8176-8273-6 (print)OAI: oai:DiVA.org:kau-15462DiVA: diva2:565693
Available from: 2012-11-08 Created: 2012-11-08 Last updated: 2016-08-10Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Fuchs, Jürgen
By organisation
Department of Physics and Electrical Engineering
Mathematics

Search outside of DiVA

GoogleGoogle Scholar

Altmetric score

Total: 20 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf