Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Evaluation of the potential of fungal and plant laccases for active-packaging applications
Department of Chemistry, Umeå University.
Karlstad University, Faculty of Technology and Science, Department of Chemical Engineering. Karlstad University, Faculty of Technology and Science, Paper Surface Centre.
Karlstad University, Faculty of Technology and Science, Department of Chemical Engineering. Karlstad University, Faculty of Technology and Science, Paper Surface Centre.ORCID iD: 0000-0002-1256-1708
Department of Chemistry, Umeå University.
2011 (English)In: Journal of Agricultural and Food Chemistry, ISSN 0021-8561, E-ISSN 1520-5118, Vol. 59, no 10, 5390-5395 p.Article in journal (Refereed) Published
Abstract [en]

Laccases from Trametes versicolor (TvL), Myceliophthora thermophila (MtL), and Rhus vernicifera (RvL) were investigated with regard to their potential utilization as oxygen scavengers in active packages containing food susceptible to oxidation reactions. The substrate selectivity of the laccases was investigated with a set of 17 reducing substrates, mainly phenolic compounds. The temperature dependence of reactions performed at low temperatures (4-31 C) was studied. Furthermore, the laccases were subjected to immobilization in a latex/clay matrix and drying procedures performed at temperatures up to 105 C. The results show that it is possible to immobilize the laccases with retained activity after dispersion coating, drying at 75-105 C, and subsequent storage of the enzyme-containing films at 4 C. TvL and, to some extent, MtL were promiscuous with regard to their reducing substrate, in the sense that the difference in activity with the 17 substrates tested was relatively small. RvL, on the other hand, showed high selectivity, primarily toward substrates resembling its natural substrate urushiol. When tested at 7 C, all three laccases retained 20% of the activity they had at 25 C, which suggests that it would be possible to utilize the laccases also in refrigerated food packages. Coating and drying resulted in a remaining enzymatic activity ranging from 18 to 53%, depending on the drying conditions used. The results indicate that laccases are useful for active-packaging applications and that the selectivity for reducing substrates is an important characteristic of laccases from different sources. 2011 American Chemical Society.

Place, publisher, year, edition, pages
WASHINGTON: American Chemical Society (ACS), 2011. Vol. 59, no 10, 5390-5395 p.
Keyword [en]
Substrates, Chip scale packages, Coatings, Drying, Packaging, Phenols, Scavenging
National Category
Natural Sciences
Research subject
Chemical Engineering
Identifiers
URN: urn:nbn:se:kau:diva-15070DOI: 10.1021/jf103811gISI: 000290691300029PubMedID: 21524087OAI: oai:DiVA.org:kau-15070DiVA: diva2:558155
Note

Trametes versicolor

Available from: 2012-10-26 Created: 2012-10-02 Last updated: 2015-10-22Bibliographically approved
In thesis
1. Oxygen-reducing enzymes in coatings and films for active packaging
Open this publication in new window or tab >>Oxygen-reducing enzymes in coatings and films for active packaging
2013 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Oxygen scavengers are used in active packages to protect the food against deteriorative oxidation processes. The aim of this work was to investigate the possibilities to produce oxygen-scavenging packaging materials based on oxygen-reducing enzymes. The enzymes were incorporated into a dispersion coating formulation applied onto a food-packaging board using conventional laboratory coating techniques.

Various enzymes were used: a glucose oxidase, an oxalate oxidase and three laccases originating from different organisms. All of the enzymes were successfully incorporated into a coating layer and could be reactivated after drying. For at least two of the enzymes, re-activation was possible not only by using liquid water but also by using water vapour. Re-activation of the glucose oxidase and a laccase required relative humidities of greater than 75% and greater than 92%, respectively.

Catalytic reduction of oxygen gas by glucose oxidase was promoted by creating an open structure through addition of clay to the coating at a level above the critical pigment volume concentration. Migration of the enzyme and the substrate was reduced by adding an extrusion-coated liner of polypropylene on top of the coating.

For the laccase-catalysed reduction of oxygen it was possible to use lignin derivatives as substrates for the enzymatic reaction. The laccase-catalysed reaction created a polymeric network by cross-linking of lignin-based entities, which resulted in increased stiffness and increased water-resistance of biopolymer films. The laccases were also investigated with regard to their potential to function as oxygen scavengers at low temperatures. At 7°C all three laccases retained more than 20% of the activity they had at room temperature (25°C), which suggests that the system is also useful for packaging of refrigerated food.

Place, publisher, year, edition, pages
Karlstad: Karlstads universitet, 2013. 91 p.
Series
Karlstad University Studies, ISSN 1403-8099 ; 2013:38
Keyword
Active packaging, food packaging, oxygen scavengers, oxygen-reducing enzymes, dispersion coating, biopolymers
National Category
Chemical Engineering
Research subject
Chemical Engineering
Identifiers
urn:nbn:se:kau:diva-28749 (URN)978-91-7063-516-8 (ISBN)
Public defence
2013-10-18, 9C204, Rejmersalen, Karlstad, 10:15 (English)
Opponent
Supervisors
Available from: 2013-09-27 Created: 2013-08-27 Last updated: 2014-10-27Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textPubMed

Search in DiVA

By author/editor
Johansson, KristinJärnström, Lars
By organisation
Department of Chemical EngineeringPaper Surface Centre
In the same journal
Journal of Agricultural and Food Chemistry
Natural Sciences

Search outside of DiVA

GoogleGoogle Scholar

Altmetric score

Total: 114 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf