Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
On the Use of an Increased Initial Congestion Window to Improve mSCTP Handover Performance
Karlstad University, Faculty of Economic Sciences, Communication and IT, Department of Computer Science. (DISCO)
Karlstad University, Faculty of Economic Sciences, Communication and IT, Department of Computer Science. (DISCO)ORCID iD: 0000-0003-4147-9487
Karlstad University, Faculty of Economic Sciences, Communication and IT, Department of Computer Science. (DISCO)
2012 (English)In: WAINA 2012: 26th International Conference on Advanced Information Networking and Applications Workshops / [ed] Leonard Barolli, Tomoya Enokido, Fatos Xhafa, Makoto Takizawa, IEEE Press, 2012, 1101-1106 p.Conference paper, (Refereed)
Abstract [en]

With the wireless landscape being ratherheterogeneous, handover between different networktechnologies, so-called vertical handover, becomes keyto a continued success for wireless Internet access.Recently, an extension to the Stream Control Trans-mission Protocol (SCTP) – the Dynamic Address Re-configuration (DAR) extension – was standardized bythe IETF. This extension enables the use of SCTPfor vertical handover. Still, the way vertical handoverworks in SCTP with DAR makes it less suitable for real-time traffic. Particularly, it takes a significant amountof time for the traffic to ramp up to full speed on thehandover target path. In this paper, we study the ex-tent to which an increased initial congestion window onthe handover target path decreases the transfer delayspikes in real-time video traffic experienced during avertical handover. The impact on both standard andhigh-definition video traffic is considered. The resultsof our study suggest that an increased initial congestionwindow does indeed significantly decrease the spikes inthe video traffic. However, the results also indicate thatit does not resolve the problem altogether.

Place, publisher, year, edition, pages
IEEE Press, 2012. 1101-1106 p.
Keyword [en]
SCTP; Dynamic Address Reconfiguration; Video; Mobility; Multihoming; Congestion Control; Handover
National Category
Computer Systems
Research subject
Computer Science
Identifiers
URN: urn:nbn:se:kau:diva-13350DOI: 10.1109/WAINA.2012.111ISBN: 978-0-7695-4652-0 (print)OAI: oai:DiVA.org:kau-13350DiVA: diva2:527722
Conference
WAINA 2012 - 26th IEEE International Conference on Advanced Information Networking and Applications Workshops, Fukuoka, Japan, March 26-29
Projects
SCTP Smartswitch
Note

Ingår i projekt

Om publikationen ingår i ett projekt, ange projektets namn. För att ange flera projekt, klicka på Ytterligare projekt.

x

Available from: 2012-05-22 Created: 2012-05-22 Last updated: 2016-10-15Bibliographically approved
In thesis
1. Latency Reduction for Soft Real-Time Traffic using SCTP Multihoming
Open this publication in new window or tab >>Latency Reduction for Soft Real-Time Traffic using SCTP Multihoming
2016 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

More and more so-called soft real-time traffic is being sent over IP-based networks. The bursty, data-limited traffic pattern as well as the latency requirements from this traffic present challenges to the traditional communication techniques, designed for bulk traffic without considering latency.

To meet the requirements from soft real-time traffic, in particular from telephony signaling, the Stream Control Transmission Protocol (SCTP) was designed. Its support for connectivity to multiple networks, i.e., multihoming, provides robustness and opens up for concurrent multipath transfer (CMT) over multiple paths. Since SCTP is a general transport protocol, it also enables for handover of media sessions between heterogeneous networks. Migrating an ongoing session to a new network, as well as CMT with minimal latency, requires tuning of several protocol parameters and mechanisms.

This thesis addresses latency reduction for soft real-time traffic using SCTP multihoming from three perspectives. The first focus is on latency for signaling traffic in case of path failure, where a path switch, a failover, occurs. We regard quick failure detection as well as rapid startup on the failover target path. The results indicate that by careful parameter tuning, the failover time may be significantly reduced. The second focus in the thesis is on latency for signaling traffic using CMT. To this end, we address sender-side scheduling. We evaluate some existing schedulers, and design a dynamic stream-aware scheduler. The results indicate that the dynamic stream-aware scheduler may provide significantly improved latency in unbalanced networks. Finally, we target multihomed SCTP to provide for handover of a media session between heterogeneous wireless networks in a mobile scenario. We implement a handover scheme and our investigation shows that SCTP could provide for seamless handover of a media session at walking speed.

Abstract [en]

So-called soft real-time traffic may be sent over IP-based networks. The bursty, data-limited traffic pattern and the latency requirements from this traffic present a challenge to traditional communication techniques. The Stream Control Transmission Protocol (SCTP), with support for multihoming, was designed to better meet the requirements from soft-real time traffic. Multihoming provides for robustness and for concurrent multipath transfer (CMT) as well as for handover of sessions between heterogeneous networks. Still, to meet the timeliness requirements, tuning of protocol parameters and mechanisms is crucial.

This thesis addresses latency reduction for soft real-time traffic using SCTP multihoming. The first focus is on signaling traffic in case of path failure, where a path switch, a failover, occurs. We show that careful parameter tuning may reduce the failover time significantly. The second focus is on signaling traffic using CMT. We address sender-side scheduling and show that dynamic stream-aware scheduling may reduce latency when data is transmitted over asymmetric network  paths. The third focus is multihomed SCTP for handover between heterogeneous networks, where we show that SCTP could provide for seamless handover of a media session at walking speed.

Place, publisher, year, edition, pages
Karlstad: Karlstad University Press, 2016. 34 p.
Series
Karlstad University Studies, ISSN 1403-8099 ; 2016:14
Keyword
transport protocol, SCTP, multihoming, latency, performance evaluation, failover, concurrent multipath transfer, scheduling, mobility, handover
National Category
Computer Science
Research subject
Computer Science
Identifiers
urn:nbn:se:kau:diva-40713 (URN)978-91-7063-693-6 (ISBN)
Public defence
2016-06-17, 21A342, Karlstad, 09:30 (English)
Opponent
Supervisors
Note

Paper 3 (Efficient Scheduling to Reduce Latency...) ingick i avhandlingen som manuskript med samma namn.

Available from: 2016-05-18 Created: 2016-02-25 Last updated: 2017-03-07Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Eklund, JohanGrinnemo, Karl-JohanBrunstrom, Anna
By organisation
Department of Computer Science
Computer Systems

Search outside of DiVA

GoogleGoogle Scholar

Altmetric score

Total: 178 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf