The main topic of this doctoral thesis is D-branes in string theory, expressed in the language of conformal field theory. The purpose of string theory is to describe the elementary particles and the fundamental interactions of nature, including gravitation as a quantum theory. String theory has not yet reached the status to make falsifiable predictions, thus it is not certain that string theory has any direct relevance to physics. On the other hand, string theory related research has led to progress in mathematics.
We begin with a short introduction to conformal field theory and some of its applications to string theory. We also introduce vertex algebras and discuss their relevance to conformal field theory. Some classes of conformal field theories are introduced, and we discuss the relevant vertex algebras, as well as their interpretation in terms of string theory.
In string theory, a D-brane specifies where the endpoint of the string lives. Many aspects of string theory can be described in terms of a conformal field theory, which is a field theory that lives on a two-dimensional space. The conformal field theory counterpart of a D-brane is a boundary state, which in some cases has a natural interpretation as constraining the string end point. The main focus of this thesis is on the interpretation of boundary states in terms of D-branes in curved target spaces.