Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
A Deeper Investigation of Strange Preparative Band Shapes of a Simple Racemic Solute on tris-(3, 5- dimethylphenyl)carbamoyl Cellulose as Chiral Stationary Phase
Karlstad University, Faculty of Technology and Science, Department of Chemistry and Biomedical Sciences.
Karlstad University, Faculty of Technology and Science, Department of Chemistry and Biomedical Sciences.ORCID iD: 0000-0003-1819-1709
Karlstad University, Faculty of Technology and Science, Department of Chemistry and Biomedical Sciences.
2011 (English)Conference paper, (Refereed)
Abstract

The adsorption equilibria of racemic methyl mandelate on a tris-(3, 5-dimethylphenyl)carbamoyl cellulose chiral stationary phase (CSP) has a peculiar behavior. The preparative band shape of the more retained enantiomer was very unusual with an inflection point at low concentrations whereas the less retained enantiomer shows normal type I adsorption behavior. For a deeper understanding of this separation adsorption isotherms were determined and further analyzed with Scatchard plots combined with adsorption energy distribution calculations. The less retained enantiomer was best described by Tóth adsorption isotherm while the second enantiomer was best described with a bi-Moreau adsorption isotherm. The Moreau model is an extension of the Langmuir model including non-ideal adsorbate-adsorbate interactions; here the unusual model provided an explanation to the non-ideal adsorption of the more retained enantiomer. Furthermore, the possibility of using the Moreau model as a local model for adsorption in AED calculations was evaluated by synthetically generated raw adsorption slope data. It was demonstrated that the AED accurately could predict the number of adsorption sites for the generated data. The adsorption behavior of both enantiomers was also studied at several different temperatures and it was found to be exothermic; in addition, the non-ideal adsorbate-adsorbate interaction strength decreases with increasing temperature. Stochastic analysis of the adsorption process could identify a single kinetic site for each enantiomer. The average amount of adsorption/desorption events increases and the sojourn time decreases with increasing temperature

Place, publisher, year, edition, pages
2011.
National Category
Chemical Sciences
Research subject
Chemistry
Identifiers
URN: urn:nbn:se:kau:diva-11531OAI: oai:DiVA.org:kau-11531DiVA: diva2:493071
Conference
PREP 2011 in Boston, USA
Available from: 2012-02-08 Created: 2012-02-08 Last updated: 2017-01-25Bibliographically approved

Open Access in DiVA

No full text

Search in DiVA

By author/editor
Enmark, MartinSamuelsson, JörgenFornstedt, Torgny
By organisation
Department of Chemistry and Biomedical Sciences
Chemical Sciences

Search outside of DiVA

GoogleGoogle Scholar

Total: 28 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf