Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • apa.csl
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Dynamic NB-IoT Configuration: A Machine Learning-Driven Optimization Framework
Karlstad University, Faculty of Health, Science and Technology (starting 2013), Department of Mathematics and Computer Science (from 2013). (Distributed Intelligent Systems and Communication (DISCO))ORCID iD: 0000-0001-5495-4318
Karlstad University, Faculty of Health, Science and Technology (starting 2013), Department of Mathematics and Computer Science (from 2013). (Distributed Intelligent Systems and Communication (DISCO))ORCID iD: 0000-0002-3244-8083
Karlstad University, Faculty of Economic Sciences, Communication and IT (discontinued), Department of Computer Science. Karlstad University, Faculty of Health, Science and Technology (starting 2013), Department of Mathematics and Computer Science (from 2013). (Distributed Intelligent Systems and Communication (DISCO))ORCID iD: 0000-0003-4147-9487
Karlstad University, Faculty of Health, Science and Technology (starting 2013), Department of Mathematics and Computer Science (from 2013). (Distributed Intelligent Systems and Communication (DISCO))ORCID iD: 0000-0001-7311-9334
Show others and affiliations
(English)In: IEEE Internet of Things Journal, ISSN 2327-4662Article in journal (Refereed) Submitted
Abstract [en]

The deployment of Cellular Internet of Things (CIoT) is expected to reach over six billion devices by 2030. Many of these devices will be located in remote areas where replacing or recharging their batteries would be difficult and expensive. Therefore, it is crucial to configure these devices to use energy efficiently in order to avoid frequent battery replacements or recharging. However, optimizing the energy consumption of CIoT devices, considering their applications and operating environmental conditions, presents a complex challenge. In response to this challenge, we propose the Gradient-Boosted Learning Optimization for Battery Efficiency (GLOBE) framework for dynamic configuration of Narrowband Internet of Things (NB-IoT) devices. GLOBE adjusts the radio layer of NB-IoT devices based on data transmission patterns and network conditions, enabling swift and automated reconfiguration. Our results demonstrate that GLOBE reduces energy consumption by 30% to 75% compared to baseline configurations, offering significant benefits for both network operators and end devices by improving energy efficiency.

Place, publisher, year, edition, pages
IEEE Communications Society.
Keywords [en]
CIoT, NB-IoT, energy efficiency, machine learning, gradient boost, particle swarm optimization
National Category
Telecommunications
Research subject
Computer Science
Identifiers
URN: urn:nbn:se:kau:diva-103637OAI: oai:DiVA.org:kau-103637DiVA, id: diva2:1947143
Available from: 2025-03-25 Created: 2025-03-25 Last updated: 2025-03-25
In thesis
1. Improving the Energy Efficiency of Cellular IoT Devices
Open this publication in new window or tab >>Improving the Energy Efficiency of Cellular IoT Devices
2025 (English)Doctoral thesis, comprehensive summary (Other academic)
Alternative title[sv]
Förbättring av energieffektiviteten för cellulära IoT-enheter
Abstract [en]

The rapid rise of Cellular Internet of Things (CIoT) technology is expected to connect over 6 billion devices by 2029. Many of these devices, often deployed in remote, urban, or hard-to-reach areas, operate on limited battery resources and are expected to last up to 10 years. However, current battery limitations challenge the long-term operation required by many applications. Ensuring low energy consumption is therefore crucial for avoiding frequent recharging or battery replacements.

This thesis addresses the challenge of enhancing the energy efficiency of Narrow-Band Internet of Things (NB-IoT) devices by examining and optimizing the energy-saving mechanisms standardized by the 3rd Generation Partnership Project (3GPP). Specifically, the research classifies and evaluates existing energy-saving solutions for CIoT— particularly for NB-IoT—by identifying their limitations and studying the impact of mechanisms such as Discontinuous Reception (DRX), Release Assistance Indicator (RAI), Power Saving Mode (PSM), Early Data Transmission (EDT), and Preconfigured Uplink Resources (PUR) on battery life. While improved energy efficiency is essential, it often comes at the cost of increased latency. This thesis evaluates these effects on both energy consumption and latency, offering insights into the trade-offs between the two.

Based on these findings, we propose guidelines for configuring NB-IoT devices to achieve an optimal balance between energy efficiency and performance. A significant contribution of this research is the development of a machine learning-based optimization approach that dynamically adjusts configurations based on network conditions, such as signal quality, packet loss, and data transmission frequency. By integrating advanced energy-saving mechanisms with optimization techniques, this work deepens our understanding of the interplay between device configurations and battery life. Although energy-saving measures may reduce performance (e.g., increased latency or reduced throughput), further investigation into these trade-offs is essential. The proposed guidelines and strategies aim to extend NB-IoT devices’ battery life to 10 years or more, enhancing their usability across diverse CIoT deployments.

Abstract [sv]

Den snabba utvecklingen av Cellular Internet of Things (CIoT)-teknologi förväntas koppla samman över 6 miljarder enheter till år 2029. Många av dessa enheter, som ofta placeras i avlägsna, urbana eller svårtillgängliga områden, drivs av begränsade batteriresurser och förväntas fungera i upp till 10 år. Dock utgör nuvarande batteribegränsningar en utmaning för långvarig drift i många applikationer. Därför är låg energiförbrukning avgörande för att undvika frekventa laddningar eller batteribyten.

Denna avhandling adresserar utmaningen att förbättra energieffektiviteten hos NB-IoT-enheter genom att undersöka och optimera de energibesparande mekanismer som standardiserats av 3rd Generation Partnership Project (3GPP). Specifikt klassificerar och utvärderar forskningen befintliga energibesparande lösningar för CIoT, särskilt för Narrowband Internet of Things (NB-IoT), genom att identifiera deras begränsningar samt studera effekterna av mekanismer såsom Discontinuous Reception (DRX), Release Assistance Indicator (RAI), Power Saving Mode (PSM), Early Data Transmission (EDT) och Pre-configured Uplink Resources (PUR) på batteritid. Förbättrad energieffektivitet kommer dock ofta till priset av ökad latens. Denna avhandling utvärderar dessa effekter på både energiförbrukning och latens och erbjuder insikter i de avvägningar som krävs.

Baserat på resultaten föreslås riktlinjer för att konfigurera NB-IoT-enheter så att en optimal balans mellan energieffektivitet och prestanda uppnås. Ett betydande bidrag från detta arbete är utvecklingen av en maskininlärningsbaserad optimeringsmetod som dynamiskt justerar konfigurationer beroende på nätverksförhållanden, såsom signalstyrka, paketförlust och dataöverföringsfrekvens. Genom att integrera avancerade energibesparande mekanismer med optimeringstekniker fördjupar detta arbete förståelsen för samspelet mellan enhetskonfigurationer och batteritid. Även om energibesparande åtgärder kan minska prestanda (t.ex. ökad latens eller reducerad genomströmning), krävs ytterligare undersökningar kring dessa avvägningar. De föreslagna riktlinjerna och strategierna syftar till att förlänga NB-IoT-enheternas batteritid till 10 år eller mer, vilket förbättrar deras användbarhet i olika CIoT-implementeringar.

Abstract [en]

The rapid rise of Cellular Internet of Things (CIoT) is connecting billions of devices worldwide, many of which must run on limited battery power for up to 10 years. Ensuring low energy consumption is vital to avoid frequent recharges or replacements. This thesis focuses on enhancing the energy efficiency of Narrow-Band IoT (NB-IoT) devices by optimizing 3GPP’s energy-saving mechanisms. We investigate Discontinuous Reception (DRX), Release Assistance Indicator (RAI), Power Saving Mode (PSM), Early Data Transmission (EDT), and Preconfigured Uplink Resources (PUR) to evaluate how each feature affects battery life and latency. Striking a balance between energy savings and performance is key. Our machine learning-based optimization approach dynamically adjusts configurations based on network conditions, offering valuable guidelines for extending battery life to 10+ years in diverse CIoT scenarios.

Place, publisher, year, edition, pages
Karlstad: Karlstads universitet, 2025. p. 30
Series
Karlstad University Studies, ISSN 1403-8099 ; 2025:15
Keywords
CIoT, 3GPP, energy saving, mMTC, NB-IoT, LTE-M, EC-GSM-IoT, machine learning, CIoT, 3GPP, energibesparing, mMTC, NB-IoT, LTE-M, EC-GSM-IoT, maskininlärning
National Category
Telecommunications
Research subject
Computer Science
Identifiers
urn:nbn:se:kau:diva-103638 (URN)10.59217/cmon1505 (DOI)978-91-7867-562-3 (ISBN)978-91-7867-563-0 (ISBN)
Public defence
2025-05-07, 21A342 (Eva Erikssonsalen), Universitetsgatan 2, Karlstad, 10:00 (English)
Opponent
Supervisors
Available from: 2025-04-16 Created: 2025-03-25 Last updated: 2025-04-16Bibliographically approved

Open Access in DiVA

No full text in DiVA

Search in DiVA

By author/editor
Abbas, Muhammad TahirLi, YurongGrinnemo, Karl-JohanBrunström, AnnaRajiullah, Mohammad
By organisation
Department of Mathematics and Computer Science (from 2013)Department of Computer Science
In the same journal
IEEE Internet of Things Journal
Telecommunications

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 23 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • apa.csl
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf