Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • apa.csl
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
On the blow-up of the non-local thermistor problem
Uniwersytet Wrocławski, POL; Uniwersytet Zielonogórski, POL.ORCID iD: 0000-0002-9743-8636
Uniwersytet Zielonogórski, POL.
2007 (English)In: Proceedings of the Edinburgh Mathematical Society, ISSN 0013-0915, E-ISSN 1464-3839, Vol. 50, no 2, p. 389-409Article in journal (Refereed) Published
Abstract [en]

The conditions under which the solution of the non-local thermistor problem ut = Δu + λf(u)/(∫Ωf(u)dx) 2, x ε Ω ⊂ ℝN, N≥ 2, t > 0, ∂u(x, t)/∂ν + β(x)u(x, t) = 0, x ε ∂Ω, t > 0, u(x, 0) = u0(x), x ε Ω, blows up are investigated. We assume that f(s) is a decreasing function and that it is integrable in (0, ∞). Considering a suitable functional we prove that for all λ > 0 the solution of the Neumann problem blows up in finite time. The same result is obtained for the Robin problem under the assumption that λ is sufficiently large (λ ≫ 1). In the proof of existence of blow-up for the Dirichlet problem we use the subsolution technique. We are able to construct a blowing-up lower solution under the assumption that either λ > λ* or 0 < λ < λ*, for some critical value λ*, and that the initial condition is sufficiently large provided also that f(s) satisfies the decay condition ∫0 ∞[sf(s) - s2f′(s)] ds < ∞.

Place, publisher, year, edition, pages
Cambridge University Press, 2007. Vol. 50, no 2, p. 389-409
Keywords [en]
Blow-up, Comparison techniques, Non-local parabolic problems, Thermistor problem
National Category
Mathematical Analysis
Research subject
Mathematics
Identifiers
URN: urn:nbn:se:kau:diva-88621DOI: 10.1017/s001309150500101xISI: 000247901400009Scopus ID: 2-s2.0-34249112827OAI: oai:DiVA.org:kau-88621DiVA, id: diva2:1638731
Available from: 2022-02-17 Created: 2022-02-17 Last updated: 2022-11-21Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Kavallaris, Nikos I.

Search in DiVA

By author/editor
Kavallaris, Nikos I.
In the same journal
Proceedings of the Edinburgh Mathematical Society
Mathematical Analysis

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 87 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • apa.csl
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf