Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • apa.csl
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
On a Degenerate Nonlocal Parabolic Problem Describing Infinite Dimensional Replicator Dynamics
University of Chester, GBR.ORCID iD: 0000-0002-9743-8636
Universit ̈at Paderborn, DEU.
Universit ̈at Paderborn, DEU.
2017 (English)In: SIAM Journal on Mathematical Analysis, ISSN 0036-1410, E-ISSN 1095-7154, Vol. 49, no 2, p. 954-983Article in journal (Refereed) Published
Abstract [en]

We establish the existence of locally positive weak solutions to the homogeneous Dirichlet problem for $u_t = u \Delta u + u \int_\Omega |\nabla u|^2$ in bounded domains $\Omega\subset\mathbb{R}^n$ which arises in game theory. We prove that solutions converge to 0 if the initial mass is small, whereas they undergo blow-up in finite time if the initial mass is large. In particular, it is shown that in this case the blow-up set coincides with $\overline{\Omega}$; i.e., the finite-time blow-up is global

Place, publisher, year, edition, pages
Society for Industrial and Applied Mathematics, 2017. Vol. 49, no 2, p. 954-983
National Category
Mathematical Analysis
Research subject
Mathematics
Identifiers
URN: urn:nbn:se:kau:diva-88593DOI: 10.1137/15m1053840ISI: 000400748500008OAI: oai:DiVA.org:kau-88593DiVA, id: diva2:1638672
Available from: 2022-02-17 Created: 2022-02-17 Last updated: 2022-11-21Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Authority records

Kavallaris, Nikos I.

Search in DiVA

By author/editor
Kavallaris, Nikos I.
In the same journal
SIAM Journal on Mathematical Analysis
Mathematical Analysis

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 115 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • apa.csl
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf