Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • apa.csl
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Homology model of the human tRNA splicing ligase RtcB.
National University of Ireland Galway, IRL.
Göteborgs Universitet; Universidad de la República, URY.ORCID iD: 0000-0002-6711-4972
Göteborgs Uniiversitet.
Göteborgs Universitet.
Show others and affiliations
2017 (English)In: Proteins: Structure, Function, and Bioinformatics, ISSN 0887-3585, E-ISSN 1097-0134, Vol. 85, no 11, p. 1983-1993Article in journal (Refereed) Published
Abstract [en]

RtcB is an essential human tRNA ligase required for ligating the 2',3'-cyclic phosphate and 5'-hydroxyl termini of cleaved tRNA halves during tRNA splicing and XBP1 fragments during endoplasmic reticulum stress. Activation of XBP1 has been implicated in various human tumors including breast cancer. Here we present, for the first time, a homology model of human RtcB (hRtcB) in complex with manganese and covalently bound GMP built from the Pyrococcus horikoshii RtcB (bRtcB) crystal structure, PDB ID 4DWQA. The structure is analyzed in terms of stereochemical quality, folding reliability, secondary structure similarity with bRtcB, druggability of the active site binding pocket and its metal-binding microenvironment. In comparison with bRtcB, loss of a manganese-coordinating water and movement of Asn226 (Asn202 in 4DWQA) to form metal-ligand coordination, demonstrates the uniqueness of the hRtcB model. Rotation of GMP leads to the formation of an additional metal-ligand coordination (Mn-O). Umbrella sampling simulations of Mn binding in wild type and the catalytically inactive C122A mutant reveal a clear reduction of Mn binding ability in the mutant, thus explaining the loss of activity therein. Our results furthermore clearly show that the GTP binding site of the enzyme is a well-defined pocket that can be utilized as target site for in silico drug discovery.

Place, publisher, year, edition, pages
John Wiley & Sons, 2017. Vol. 85, no 11, p. 1983-1993
Keywords [en]
HSPC117, Mn coordination, RtcB, XBP1s, active site, homology modeling, tRNA ligase
National Category
Bioinformatics (Computational Biology)
Research subject
Biology
Identifiers
URN: urn:nbn:se:kau:diva-80229DOI: 10.1002/prot.25352ISI: 000412824900003PubMedID: 28707320OAI: oai:DiVA.org:kau-80229DiVA, id: diva2:1468271
Available from: 2020-09-17 Created: 2020-09-17 Last updated: 2022-05-18Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMed

Authority records

Saenz Mendez, Patricia

Search in DiVA

By author/editor
Saenz Mendez, Patricia
In the same journal
Proteins: Structure, Function, and Bioinformatics
Bioinformatics (Computational Biology)

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 158 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • apa.csl
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf