A new fractional order poincare's inequality with weights
2020 (English)In: Mathematical Inequalities & Applications, ISSN 1331-4343, E-ISSN 1848-9966, Vol. 23, no 2, p. 611-624Article in journal (Refereed) Published
Abstract [en]
We derive a new Sawyer's type sufficient condition for the fractional order Poincare inequality with weights (integral(Omega) vertical bar f(x) - (f) over bar (v,Omega)vertical bar(q) upsilon(x)dx)1/q <= C (integral integral(Omega x Omega) vertical bar f(x) - f(y)vertical bar(p) omega(x,y)dxdy)1/p to hold in a non-regular domain Omega subset of R-n of finite volume, where omega(x,y) = vertical bar x - y vertical bar(-n-alpha P) omega(0)(x,y), 0 < alpha < 1, q >= p > 1, f is an element of C(Omega), and v(.), omega(.,.) are positive measurable functions such that omega(1-p')(x,.)v(p')(.) is an element of L(Omega) a.e. x is an element of Omega and (f) over bar (v,Omega) = 1/upsilon(Omega) integral(Omega) fvdx.
Place, publisher, year, edition, pages
ELEMENT , 2020. Vol. 23, no 2, p. 611-624
Keywords [en]
inequalities, fractional Hardy-Sobolev's inequality, weights, Poincare in-equality, fractional order Poincare inequality
National Category
Mathematics
Research subject
Materials Engineering
Identifiers
URN: urn:nbn:se:kau:diva-77882DOI: 10.7153/mia-2020-23-50ISI: 000529354800019Scopus ID: 2-s2.0-85092623879OAI: oai:DiVA.org:kau-77882DiVA, id: diva2:1432601
2020-05-272020-05-272022-05-05Bibliographically approved