System disruptions
We are currently experiencing disruptions on the search portals due to high traffic. We are working to resolve the issue, you may temporarily encounter an error message.
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • apa.csl
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Validating the Sharing Behavior and Latency Characteristics of the L4S Architecture
Karlstad University, Faculty of Health, Science and Technology (starting 2013), Department of Mathematics and Computer Science (from 2013). (DISCO)ORCID iD: 0000-0001-7529-9324
Karlstad University, Faculty of Health, Science and Technology (starting 2013), Department of Mathematics and Computer Science (from 2013).ORCID iD: 0000-0003-4147-9487
Karlstad University, Faculty of Health, Science and Technology (starting 2013), Department of Mathematics and Computer Science (from 2013).ORCID iD: 0000-0001-7311-9334
Karlstad University, Faculty of Health, Science and Technology (starting 2013), Department of Mathematics and Computer Science (from 2013).ORCID iD: 0000-0001-9194-010X
2020 (English)In: Computer communication review, ISSN 0146-4833, E-ISSN 1943-5819, Vol. 50, no 2, p. 37-44Article in journal (Refereed) Published
Abstract [en]

The strict low-latency requirements of applications such as virtual reality, online gaming, etc., can not be satisfied by the current internet. This is due to the characteristics of classic TCP such as Reno and TCP Cubic which induce high queuing delays when used for capacity-seeking traffic, which in turn results in unpredictable latency. The Low Latency, Low Loss, Scalable throughput (L4S) architecture addresses this problem by combining scalable congestion controls such as DCTCP and TCP Prague with early congestion signaling from the network. It defines a Dual Queue Coupled (DQC) AQM that isolates low-latency traffic from the queuing delay of classic traffic while ensuring the safe co-existence of scalable and classic flows on the global Internet. In this paper, we benchmarktheDualPI2 scheduler, a reference implementation of DQC AQM, to validate some of the experimental result(s) reported in the previous works that demonstrate the co-existence of scalable and classic congestion controls and its low-latency service. Our results validate the co-existence of scalable and classic flows using DualPI2 Singlequeue (SingleQ) AQM, and queue latency isolation of scalable flows using DualPI2 Dual queue (DualQ) AQM. However, the rate or win-dow fairness between DCTCP without fair-queuing (FQ) pacing and TCP Cubic using DualPI2 DualQ AQM deviates from the original results. We attribute the difference in our results and the original results to the sensitivity of the L4S architecture to traffic bursts and the burst sending pattern of the Linux kernel.

Place, publisher, year, edition, pages
ACM Digital Library, 2020. Vol. 50, no 2, p. 37-44
Keywords [en]
Congestion control, L4S, ECN, Low-latency, Reproducibility
National Category
Computer and Information Sciences
Research subject
Computer Science
Identifiers
URN: urn:nbn:se:kau:diva-77494DOI: 10.1145/3402413.3402419ISI: 000582604500011Scopus ID: 2-s2.0-85086399421OAI: oai:DiVA.org:kau-77494DiVA, id: diva2:1424378
Projects
HITSAvailable from: 2020-04-17 Created: 2020-04-17 Last updated: 2020-11-17Bibliographically approved
In thesis
1. Low Latency Communication in Virtualized and Multipath Networks
Open this publication in new window or tab >>Low Latency Communication in Virtualized and Multipath Networks
2020 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The demand from customers for high-quality and customized network services has increased. Telecom service providers have adopted a Network Functions Virtualization (NFV) based service delivery model, in response to the unprecedented traffic growth and increasing customer demand. However, in virtualized systems, achieving carrier-grade network performance such as low latency to guarantee the quality of experience (QoE) of customers is challenging. Moreover, queuing delays that may occur both in the datacenter networks and the IP network infrastructure inhibit the deployment of emerging low-latency services.

In this thesis, we focus on addressing the problem of network latency. We study the delay overhead of virtualization by comprehensive network performance measurements and analysis, in a controlled virtualized environment. The study of virtualization delay provides a break-down of the latency imposed by the virtualization and the impact of the consolidation of virtualized applications of different workloads on the end-to-end latency. On the basis of our study, we developed an optimization model for the placement and provisioning of virtualized telecom applications subject to both the latency and cost-efficiency requirements.

To mitigate network latency that results from queuing delays as well as to improve multipath network capacity utilization of a datacenter network, we propose a multipath congestion control, Multipath Datacenter TCP (MDTCP), that leverages Explicit Congestion Notification (ECN) to detect and react to queuing delays caused by incipient congestion. Furthermore, we extend MDTCP with the Low Latency Low Loss and Scalable Throughput (L4S) Internet service architecture support so that it can also be used in the Internet. This ensures the low-latency demand of delay-sensitive applications and improves QoE of Internet users by exploiting the multi-access or multi-connectivity technologies of user devices.

Abstract [en]

The demand for high-quality network services has increased. Telecom service providers have adopted the NFV-based service delivery model, in response to the unprecedented traffic growth and increasing customer demand. In virtualized systems, achieving carrier-grade network performance such as low latency to guarantee the QoE of customers is challenging. Moreover, queuing delays that may occur both in the datacenter and IP networks inhibit the deployment of low-latency services.

This thesis addresses the problem of network latency. We study the delay overhead of virtualization by comprehensive network performance measurements and obtain the break-down of the latency imposed by the virtualization and the impact of the consolidation of virtualized applications of different workloads on the end-to-end latency. Then, we developed an optimization model for the placement and provisioning of virtualized telecom applications subject to both the latency and cost-efficiency requirements.

To mitigate queuing delays and improve multipath network capacity utilization of a datacenter network, we propose MDTCP that leverages ECN to detect and react to queuing delays caused by incipient congestion. We extend MDTCP with the L4S architecture support so that it can also be used in the Internet. This ensures the demand of delay-sensitive applications and improves QoE of Internet users by exploiting the multi-access or multi-connectivity technologies of user devices.

Place, publisher, year, edition, pages
Karlstad: Karlstads universitet, 2020. p. 44
Series
Karlstad University Studies, ISSN 1403-8099 ; 2020:31
Keywords
Latency, Virtualization, Cloud computing, NFV, DCTCP, MPTCP, L4S, Network measurement, Performance evaluation, Queuing
National Category
Computer Sciences
Research subject
Computer Science
Identifiers
urn:nbn:se:kau:diva-80321 (URN)978-91-7867-152-6 (ISBN)978-91-7867-156-4 (ISBN)
Public defence
2020-11-04, 21A 342, Eva Eriksson, Karlstad, 09:00 (English)
Opponent
Supervisors
Projects
HITS
Funder
Knowledge Foundation, 4707
Available from: 2020-10-15 Created: 2020-09-22 Last updated: 2020-10-15Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Oljira, Dejene BoruGrinnemo, Karl-JohanBrunström, AnnaTaheri, Javid

Search in DiVA

By author/editor
Oljira, Dejene BoruGrinnemo, Karl-JohanBrunström, AnnaTaheri, Javid
By organisation
Department of Mathematics and Computer Science (from 2013)
In the same journal
Computer communication review
Computer and Information Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 498 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • apa.csl
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf