Exploring the interactions between starches, bentonites and plasticizers in sustainable barrier coatings for paper and boardShow others and affiliations
2019 (English)In: Applied Clay Science, ISSN 0169-1317, E-ISSN 1872-9053, Vol. 183, article id 105272Article in journal (Refereed) Published
Abstract [en]
Effective food packaging is a major factor in the current global drive to minimise food waste. Starch is an excellent oxygen barrier for packaging but it is brittle and moisture sensitive. The addition of layered minerals and plasticizers can significantly improve the moisture barrier and flexibility of the resulting composite. Some combinations of starch and plasticizer are incompatible but our results show that the addition of bentonite ensures the formation of coherent starch films with much improved moisture barrier regardless of the starch-plasticizer compatibility. It was clearly demonstrated that improvement of the moisture barrier was critically dependent on the layer charge of the bentonite used. Starch was readily accommodated in the interlayer space of bentonites with a layer charge of <0.4 electrons per formula unit but was not adsorbed if the layer charge was above this value. Starch-bentonite-plasticizer coatings prepared using bentonites with the lower layer charge routinely produced higher barriers to water vapour. The water vapour transmission rate (WVTR) of the base paper was reduced from 780 to 340 ± 20 g m2 day−1 when coated with starch alone. This was further reduced to 48 or 66 g m2 day−1 if glycerol or lower charge bentonite, respectively, was added to the starch. Optimised coatings of starch-lower charge bentonite-plasticizer provided WVTR values of ≤10 g m2 day−1 whereas WVTR values for comparative coatings prepared using the higher charge bentonites were three to four times higher (35 ± 7 g m2 day−1). Scanning electron micrographs provided clear evidence for the presence of 60 nm thick supramolecular layers formed from starch-bentonite-plasticizer in the samples coated on either glass or paper. The WVTR values for these low-eco footprint coatings are competitive with proprietary coatings prepared using petroleum derived resins.
Place, publisher, year, edition, pages
Elsevier Ltd , 2019. Vol. 183, article id 105272
Keywords [en]
Barrier coating, Bentonite, Layer charge, SEM, Starch, X-ray diffraction, Coatings, Moisture, Plasticizers, Reinforced plastics, Scanning electron microscopy, Solvents, Water vapor, X ray diffraction, Barrier coatings, Interlayer spaces, Moisture barriers, Paper and boards, Scanning electron micrographs, Supramolecular layers, Transmission rates, resin, Vapor Barriers
National Category
Chemical Sciences
Research subject
Chemical Engineering
Identifiers
URN: urn:nbn:se:kau:diva-75726DOI: 10.1016/j.clay.2019.105272ISI: 000506426500001Scopus ID: 2-s2.0-85073156077OAI: oai:DiVA.org:kau-75726DiVA, id: diva2:1369699
2019-11-122019-11-122020-01-23Bibliographically approved