CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_upper_j_idt161",{id:"formSmash:upper:j_idt161",widgetVar:"widget_formSmash_upper_j_idt161",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:upper:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_upper_j_idt162_j_idt164",{id:"formSmash:upper:j_idt162:j_idt164",widgetVar:"widget_formSmash_upper_j_idt162_j_idt164",target:"formSmash:upper:j_idt162:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

Discrete quantum Boltzmann equationPrimeFaces.cw("AccordionPanel","widget_formSmash_some",{id:"formSmash:some",widgetVar:"widget_formSmash_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_all",{id:"formSmash:all",widgetVar:"widget_formSmash_all",multiple:true});
function selectAll()
{
var panelSome = $(PrimeFaces.escapeClientId("formSmash:some"));
var panelAll = $(PrimeFaces.escapeClientId("formSmash:all"));
panelAll.toggle();
toggleList(panelSome.get(0).childNodes, panelAll);
toggleList(panelAll.get(0).childNodes, panelAll);
}
/*Toggling the list of authorPanel nodes according to the toggling of the closeable second panel */
function toggleList(childList, panel)
{
var panelWasOpen = (panel.get(0).style.display == 'none');
// console.log('panel was open ' + panelWasOpen);
for (var c = 0; c < childList.length; c++) {
if (childList[c].classList.contains('authorPanel')) {
clickNode(panelWasOpen, childList[c]);
}
}
}
/*nodes have styleClass ui-corner-top if they are expanded and ui-corner-all if they are collapsed */
function clickNode(collapse, child)
{
if (collapse && child.classList.contains('ui-corner-top')) {
// console.log('collapse');
child.click();
}
if (!collapse && child.classList.contains('ui-corner-all')) {
// console.log('expand');
child.click();
}
}
2019 (English)In: AIP Conference Proceedings, American Institute of Physics (AIP), 2019, Vol. 2132, p. 1-9, article id 130011Conference paper, Published paper (Refereed)
##### Abstract [en]

##### Place, publisher, year, edition, pages

American Institute of Physics (AIP), 2019. Vol. 2132, p. 1-9, article id 130011
##### Series

AIP Conference Proceedings, ISSN 0094-243X, E-ISSN 1551-7616
##### National Category

Mathematics
##### Research subject

Mathematics
##### Identifiers

URN: urn:nbn:se:kau:diva-75689DOI: 10.1063/1.5119631ISI: 000522452700109Scopus ID: 2-s2.0-85070692522ISBN: 9780735418745 (print)OAI: oai:DiVA.org:kau-75689DiVA, id: diva2:1369679
##### Conference

31st International Symposium on Rarefied Gas Dynamics, RGD 2018, 23 July 2018 through 27 July 2018
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt463",{id:"formSmash:j_idt463",widgetVar:"widget_formSmash_j_idt463",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt469",{id:"formSmash:j_idt469",widgetVar:"widget_formSmash_j_idt469",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt475",{id:"formSmash:j_idt475",widgetVar:"widget_formSmash_j_idt475",multiple:true}); Available from: 2019-11-12 Created: 2019-11-12 Last updated: 2020-04-23Bibliographically approved

In this work, we consider a Boltzmann equation for anyons. In particular, we study a general discrete velocity model of the equation, where the velocity variable is assumed to only take values from a given finite-such that the (finite) number of velocities is arbitrary-set of velocities. Included, as two limiting cases, is the discrete quantum Boltzmann equation (Nordheim-Boltzmann/Uehling-Uhlenbeck equation) for bosons and fermions. Mass, momentum, and energy are assumed to be conserved during collisions, and considering suitable discrete velocity models, they will also be the only collision invariants. The equilibrium distributions will be given by a transcendental equation, and only in some few cases-including the two limiting cases where they are Planckians-they will be explicitly expressed. However, there is an H-theorem, and therefore one can prove that for the spatially homogeneous equation, as time tends to infinity, as well as, for the steady equation in a half-space with slab-symmetry, as the space variable tends to infinity, the distribution function converges to an equilibrium distribution. Linearizing around an equilibrium distribution in a suitable way, we find that the obtained linearized operator has similar properties as the corresponding linearized operator for the discrete Boltzmann equation: E.g. it is symmetric and positive semi-definite. Hence, previously obtained results for the spatially homogeneous Cauchy problem and the steady half-space problem in a slab symmetry for the discrete Boltzmann equation, can be applied also in the considered quantum case.

doi
isbn
urn-nbn$(function(){PrimeFaces.cw("Tooltip","widget_formSmash_j_idt1193",{id:"formSmash:j_idt1193",widgetVar:"widget_formSmash_j_idt1193",showEffect:"fade",hideEffect:"fade",showDelay:500,hideDelay:300,target:"formSmash:altmetricDiv"});});

CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_lower_j_idt1248",{id:"formSmash:lower:j_idt1248",widgetVar:"widget_formSmash_lower_j_idt1248",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:lower:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_lower_j_idt1249_j_idt1251",{id:"formSmash:lower:j_idt1249:j_idt1251",widgetVar:"widget_formSmash_lower_j_idt1249_j_idt1251",target:"formSmash:lower:j_idt1249:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});