This study aims at providing a new method to efficiently analyse detailed urban ecological conditions at the example of Shanghai, one of the world’s most densely populated megacities. The main objective is to develop a method to effectively analyse high-resolution optical satellite data for mapping of ecologically important urban space and to evaluate ecological changes through the emerging ecosystem service supply and demand budget concept. Two IKONOS and GeoEye-1 scenes were used to determine land use/land cover change in Shanghai's urban core from 2000 to 2009. After pre-processing, the images were segmented and classified into seven distinct urban land use/land cover classes through SVM. The classes were then transformed into ecosystem service supply and demand budgets based on ecosystem functions. Decreases of continuous urban fabric and industrial areas in the favour of urban green sites and high-rise areas with commercial/residential function could be observed resulting in an increase of at least 20% in service supply budgets. Main contributors to the change are mainly the decrease of continuous urban fabric and industrial areas. The overall results and outcome of the study strengthen the suggested application of the proposed method for urban ecosystem service budget mapping with hitherto for that purpose unutilized high-resolution data. The insights and results from this study might further contribute to sustainable urban planning, prove common grounds for inter-urban comparisons or aid in enhancing ecological intra-urban functionality by analysing the distribution of urban eco-space and lead to improved accessibility and proximity to ecosystem services in urban areas