System disruptions
We are currently experiencing disruptions on the search portals due to high traffic. We are working to resolve the issue, you may temporarily encounter an error message.
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • apa.csl
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Effect of solution matrix and pH in Z-nZVI-catalyzed percarbonate system on the generation of reactive oxygen species and degradation of 1,1,1-trichloroethane
East China Univ Sci & Technol, Peoples R China..
East China Univ Sci & Technol, Peoples R China..
East China Univ Sci & Technol, Peoples R China..
East China Univ Sci & Technol, Peoples R China..
Show others and affiliations
2017 (English)In: Water Science and Technology: Water Supply, ISSN 1606-9749, E-ISSN 1607-0798, Vol. 17, no 6, p. 1568-1578Article in journal (Refereed) Published
Abstract [en]

This study primarily focuses on evaluating the effects of solution matrix and pH for the generation of reactive oxygen species (ROSs) in a Z-nZVI-catalyzed sodium percarbonate (SPC) system to degrade 1,1,1-trichloroethane (1,1,1-TCA) in the absence and presence of a reducing agent (RA), i.e. hydroxylamine. Degradation of 1,1,1-TCA was 49.5% and 95% in the absence and presence of RA. Probe tests confirmed the generation of major hydroxyl radicals (OH center dot) and minor superoxide species (O-2(-center dot)), and scavenger tests verified the key role of OH center dot and less of O-2(-center dot) radicals. Degradation of 1,1,1-TCA decreased significantly in the presence of Cl- and HCO3-, while NO3- and SO42- had negligible effects in the absence of RA. Addition of RA significantly enhanced 1,1,1-TCA degradation by generating more OH center dot and O-2(-center dot) radicals in the presence of anions. Degradation of 1,1,1-TCA increased in the acidic range (1-5), while an inhibitive trend from neutral to basic (7-9) was observed. In contrast, a significant increase in 1,1,1-TCA degradation was observed with the addition of RA at all pH values (1-9). In conclusion, the anions and pH significantly influenced the generation and intensity of ROSs and 1,1,1-TCA was effectively degraded in the Z-nZVI-catalyzed SPC system in the presence of RA.

Place, publisher, year, edition, pages
London, UK: IWA PUBLISHING , 2017. Vol. 17, no 6, p. 1568-1578
Keywords [en]
groundwater remediation, hydroxylamine, nano-scale composite, reactive oxygen species, sodium percarbonate, solution matrix
National Category
Chemical Engineering
Research subject
Chemical Engineering
Identifiers
URN: urn:nbn:se:kau:diva-74902DOI: 10.2166/ws.2017.060ISI: 000417947000008OAI: oai:DiVA.org:kau-74902DiVA, id: diva2:1355973
Available from: 2019-09-30 Created: 2019-09-30 Last updated: 2020-01-28Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Authority records

Naqvi, Muhammad

Search in DiVA

By author/editor
Naqvi, Muhammad
In the same journal
Water Science and Technology: Water Supply
Chemical Engineering

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 30 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • apa.csl
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf