Instability failures of timber elements and timber structures are reported relatively frequently although there are some suggestions available how to prevent such failures. These types of failures are characterized by sudden deformations that typically lead to failure in a single loadbearing element or collapse of the entire structure. This paper deals with buckling analysis and geometric nonlinear stress analysis of pitched roof structures of wood. A FE- model has been developed and used to study how different parameters influence the buckling modes and force distribution in the lateral bracing system of the roof structure. The simulated forces in the bracing system are also compared with results based on a simple design method given in Eurocode 5 (EC5) and a method where the compressed top chord is treated as a beam on a continuous elastic foundation. The buckling simulations showed the out-of-plane buckling to be the critical failure mode for the truss structure studied and the geometric nonlinear analysis showed the bracing stiffness and the bracing forces to be significant lower than those calculated by hand according to EC5.