Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Embedding theorems for Sobolev and Hardy-Sobolev spaces and estimates of Fourier transforms
Karlstad University, Faculty of Health, Science and Technology (starting 2013), Department of Mathematics and Computer Science (from 2013).
2019 (English)In: Annali di Matematica Pura ed Applicata, ISSN 0373-3114, E-ISSN 1618-1891, Vol. 198, no 2, p. 615-637Article in journal (Refereed) Published
Abstract [en]

We prove embeddings of Sobolev and Hardy-Sobolev spaces into Besov spaces built upon certain mixed norms. This gives an improvement of the known embeddings into usual Besov spaces. Applying these results, we obtain Oberlin-type estimates of Fourier transforms for functions in Sobolev spaces W11(Rn).

Place, publisher, year, edition, pages
Springer, 2019. Vol. 198, no 2, p. 615-637
National Category
Mathematics
Research subject
Mathematics
Identifiers
URN: urn:nbn:se:kau:diva-71809DOI: 10.1007/s10231-018-0792-2ISI: 000462444500016OAI: oai:DiVA.org:kau-71809DiVA, id: diva2:1304103
Available from: 2019-04-11 Created: 2019-04-11 Last updated: 2019-04-11Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text
By organisation
Department of Mathematics and Computer Science (from 2013)
In the same journal
Annali di Matematica Pura ed Applicata
Mathematics

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 51 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf