Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Dewatering properties of low grammage handsheets of softwood kraft pulps modified to minimize the need for refining
Mittuniversitetet.
Mittuniversitetet.
SCA R&D.
Karlstad University, Faculty of Health, Science and Technology (starting 2013), Department of Engineering and Chemical Sciences (from 2013).
2018 (English)In: Nordic Pulp & Paper Research Journal, ISSN 0283-2631, E-ISSN 2000-0669, Vol. 33, no 3, p. 397-403Article in journal (Refereed) Published
Abstract [en]

Previous paper (Rahman et al. 2017) showed that the yield of softwood kraft pulp increased by the addition of either polysulfide or sodium borohydride because of higher hemicellulose retention. An increase in hemicellulose content can make dewatering more difficult as WRV of the pulp increases, but instead, an overall increase in pulp yield could improve dewatering as a sheet of a certain weight will contain fewer fibres, giving a more open sheet structure. It was therefore of interest to measure the dewatering properties of low grammage handsheets (20 g/m2) under conditions mimicking the tissue paper machine dewatering processes, and sheet strength properties, WRV, °SR and fibre dimensions were also studied. The results showed that the positive influence of overall yield increase dominated over the negative influence of an increase in hemicellulose content on the dewatering properties, particularly at lower refining energy levels. Moreover, higher yield and higher hemicellulose content pulps had a higher tensile index at the same dryness. A given tensile index was achieved with less refining energy. The results indicate that increased yield and hemicellulose content by modification of the kraft pulping process will result in a pulp with a potential to improve tissue paper quality.

Place, publisher, year, edition, pages
De Gruyter Open Ltd , 2018. Vol. 33, no 3, p. 397-403
Keywords [en]
dwell time, hemicellulose, refining, solid content, suction box dewatering, tensile index, thermoporosimetry, water retention value, Cellulose, Dewatering, Kraft pulp, Paper products, Papermaking machinery, Sodium Borohydride, Softwoods, Tissue, Water content, Solid contents, Suction box, Pulp refining
National Category
Chemical Engineering Paper, Pulp and Fiber Technology
Research subject
Chemical Engineering
Identifiers
URN: urn:nbn:se:kau:diva-69226DOI: 10.1515/npprj-2018-3037ISI: 000450923900005Scopus ID: 2-s2.0-85052642839OAI: oai:DiVA.org:kau-69226DiVA, id: diva2:1248351
Available from: 2018-09-14 Created: 2018-09-14 Last updated: 2019-12-13Bibliographically approved
In thesis
1.
The record could not be found. The reason may be that the record is no longer available or you may have typed in a wrong id in the address field.

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records BETA

Sjöstrand, Björn

Search in DiVA

By author/editor
Sjöstrand, Björn
By organisation
Department of Engineering and Chemical Sciences (from 2013)
In the same journal
Nordic Pulp & Paper Research Journal
Chemical EngineeringPaper, Pulp and Fiber Technology

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 26 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf