Flow classification is an important tool to enable efficient network resource usage, support traffic engineering, and aid QoS mechanisms. As traffic is increasingly becoming encrypted by default, flow classification is turning towards the use of machine learning methods employing features that are also available for encrypted traffic. In this work we evaluate flow features that capture the distributional properties of in-flow per-packet metrics such as packet size and inter-arrival time. The characteristics of such distributions are often captured with general statistical measures such as standard deviation, variance, etc. We instead propose a Kolmogorov-Smirnov discretization (KSD) algorithm to perform histogram bin construction based on the distributional properties observed in the data. This allows for a richer, histogram based, representation which also requires less resources for feature computation than higher order statistical moments. A comprehensive evaluation using synthetic data from Gaussian and Beta mixtures show that the KSD approach provides Jensen-Shannon distance results surpassing those of uniform binning and probabilistic binning. An empirical evaluation using live traffic traces from a cellular network further shows that when coupled with a random forest classifier the KSD-constructed features improve classification performance compared to general statistical features based on higher order moments, or alternative bin placement approaches.