Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Indexbaserad kartering av markfuktighet
Karlstad University, Faculty of Health, Science and Technology (starting 2013).
2018 (Swedish)Independent thesis Basic level (degree of Bachelor), 15 credits / 22,5 HE creditsStudent thesisAlternative title
Index-based mapping of soil moisture (English)
Abstract [sv]

Det växande behovet av metoder för tillförlitlig identifiering och kartering av markfuktighet i landskapet inom naturvård och skogsbruk ställer ökade krav på kartmaterialet. Dagens kartor är generellt baserade på flygbildstolkning vilket ofta resulterar i en ofullständig och generaliserad redovisning av våtmarker. Med LiDAR-data och moderna GIS-program kan topografiska markfuktighetsindex med hög upplösning genereras, vilket potentiellt kan ge en mer realistisk och detaljerad redovisning.

I detta examensarbete utvärderades det etablerade Topgraphic Wetness Index (TWI) och det mer nyligen utvecklade Depth to Water Index (DTW). Fem TWI-raster med upplösning 2–20 m skapades. Fyra DTW-raster med varierad Flow Initiation Threshold (1–8 ha) skapades, samtliga med 2 m upplösning. Som referensmaterial användes Vegetationskartan (GSD-Vegetationsdata), vilken bedömdes vara det bästa tillgängliga alternativet.

Resultatet från studien visar att indexkartorna överlag identifierar fler våtmarker och visar en större andel våtmark än Vegetationskartan. DTW ger en tydligare och mer realistisk kartbild jämfört med TWI. De använda metoderna för generering av indexbaserad markfuktighetskartering innehåller vissa osäkerheter. För DTW finns god förbättringspotential för att minimera dessa osäkerheter men även i att vidareutveckla metoden. Indexkartor (främst DTW) kan trots detta anses användbara i syfte att identifiera markfuktighet, särskilt i kombination med andra typer av kartdata.

Abstract [en]

The increasing need for reliable identification of wet soils in nature preservation and forestry requires more detailed and accurate maps.  Previous maps are mostly based on aerial photos which may result in an incomplete and generalized representation of wetlands. Using high resolution LiDAR-data and modern GIS software, topographic indices can be generated which has the potential to model wetlands in a more realistic and detailed manner.

This study evaluated the widely used Topgraphic Wetness Index (TWI) and the more recently developed Depth to Water Index (DTW). Five TWI-raster with a resolution of 2-20 m was created. Four DTW-raster with 2 m resolution was created with Flow Initiation Threshold varying between 1-8 ha. A vegetation map (GSD-Vegetationsdata) was used as reference since it was judged to be the best available option for comparison.

The results show that the index-maps overall identify more wetland area than the vegetation map. The DTW-index generates a clearer and realistic map compared to the TWI. The methods used for index-based mapping of soil moisture has some uncertainties. However, the DTW-index has good potential for further development. It was concluded that index-based maps (primarily DTW) can be useful for identification of soil moisture, especially if combined with other sources of map data. 

Place, publisher, year, edition, pages
2018. , p. 29
Keywords [sv]
GIS, GIS-analys, våtmarker, LiDAR, topografiska index, kartering, fjärranalys
National Category
Remote Sensing Information Systems
Identifiers
URN: urn:nbn:se:kau:diva-68428OAI: oai:DiVA.org:kau-68428DiVA, id: diva2:1230844
Subject / course
Geomatics
Educational program
Engineering: Surveying Technology and Geographical IT, 180 hp
Presentation
(Swedish)
Supervisors
Examiners
Available from: 2018-08-29 Created: 2018-07-04 Last updated: 2018-08-29Bibliographically approved

Open Access in DiVA

fulltext(2524 kB)130 downloads
File information
File name FULLTEXT01.pdfFile size 2524 kBChecksum SHA-512
aeac7ecbad4c884836d825e200006a616829c5587f5cfd5bc0e29a0fcf9d4865635203d67be3e7d103fb012ad15c67b7d12fb9fd97ad2a83ebbf849735539d05
Type fulltextMimetype application/pdf

By organisation
Faculty of Health, Science and Technology (starting 2013)
Remote SensingInformation Systems

Search outside of DiVA

GoogleGoogle Scholar
Total: 130 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 428 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf