Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Impact of column and stationary phase properties on the productivity in chiral preparative LC
Karlstad University, Faculty of Health, Science and Technology (starting 2013), Department of Engineering and Chemical Sciences (from 2013).
Karlstad University, Faculty of Health, Science and Technology (starting 2013), Department of Engineering and Chemical Sciences (from 2013).ORCID iD: 0000-0002-7123-2066
2018 (English)In: Journal of Separation Science, ISSN 1615-9306, E-ISSN 1615-9314, Vol. 41, no 6, p. 1346-1354Article in journal (Refereed) Published
Abstract [en]

By generating 1500 random chiral separation systems, assuming two-site Langmuir interactions, we investigated numerically how the maximal productivity (P-R,P-max) was affected by changes in stationary phase adsorption properties. The relative change in P-R,P-max, when one adsorption property changed 10%, was determined for each system and for each studied parameter the corresponding productivity change distribution of the systems was analyzed. We could conclude that there is no reason to have columns with more than 500 theoretical plates and larger selectivity than 3. More specifically, we found that changes in selectivity have a major impact on P-R,P-max if it is below similar to 2 and, interestingly, increasing selectivity when it is above similar to 3 decreases P-R,P-max. Increase in relative saturation capacity will have a major impact on P-R,P-max if it is below similar to 40%, but only modest above this percent. Increasing total monolayer saturation capacity, or decreasing the first eluting enantiomer's retention factor, will have a modest effect on P-R,P-max and increased efficiency will have almost no effect at all on P-R,P-max unless it is below similar to 500 theoretical plates. Finally, we showed that chiral columns with superior analytic performance might have inferior preparative performance, or vice versa. It is, therefore, not possible to assess columns based on their analytical performance alone.

Place, publisher, year, edition, pages
Wiley-VCH Verlagsgesellschaft, 2018. Vol. 41, no 6, p. 1346-1354
Keywords [en]
enantiomers, preparative chromatography, process optimization, productivity
National Category
Chemical Sciences
Research subject
Chemistry
Identifiers
URN: urn:nbn:se:kau:diva-67070DOI: 10.1002/jssc.201701435ISI: 000428797000019PubMedID: 29359510OAI: oai:DiVA.org:kau-67070DiVA, id: diva2:1198874
Available from: 2018-04-19 Created: 2018-04-19 Last updated: 2018-04-26Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMed

Authority records BETA

Forssén, PatrikFornstedt, Torgny

Search in DiVA

By author/editor
Forssén, PatrikFornstedt, Torgny
By organisation
Department of Engineering and Chemical Sciences (from 2013)
In the same journal
Journal of Separation Science
Chemical Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 6 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf