Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Embeddings of Lorentz-type spaces involving weighted integral means
Czech Acad Sci, Inst Math, Prague, Czech Republic.ORCID iD: 0000-0003-3459-0355
Karlstad University, Faculty of Health, Science and Technology (starting 2013), Department of Mathematics and Computer Science (from 2013). Univ Freiburg, Inst Math.ORCID iD: 0000-0003-0234-1645
Charles Univ Prague, Czech republic.ORCID iD: 0000-0002-3584-1454
Czech Tech Univ; Univ South Bohemia, Czech republic.
2017 (English)In: Journal of Functional Analysis, ISSN 0022-1236, E-ISSN 1096-0783, Vol. 273, no 9, p. 2939-2980Article in journal (Refereed) Published
Abstract [en]

We solve the problem of characterizing weights on (0, infinity) for which the inequality involving two possibly different general inner weighted means (integral(infinity)(0)(integral(t)(0)f*(s)(m2)u(2)(s)ds)(p2/m2) w(2)(t)dt)(1/p2) <= C(integral(infinity)(0)(integral(t)(0)f*(s)(m2)u(1)(s)ds)(p1/m1) w(1)(t)dt)(1/p1) holds, where p(1), p(2), m(1), m(2) is an element of (0, infinity) and p(2) > m(2). The proof is based on a new approach combining duality techniques with sharp weighted estimates for iterated integral and supremum operators. (C) 2017 Elsevier Inc. All rights reserved.

Place, publisher, year, edition, pages
2017. Vol. 273, no 9, p. 2939-2980
National Category
Mathematical Analysis
Identifiers
URN: urn:nbn:se:kau:diva-65863DOI: 10.1016/j.jfa.2017.06.008ISI: 000411422900005OAI: oai:DiVA.org:kau-65863DiVA, id: diva2:1177526
Available from: 2018-01-25 Created: 2018-01-25 Last updated: 2018-07-02Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Authority records BETA

Křepela, Martin

Search in DiVA

By author/editor
Gogatishvili, AmiranKřepela, MartinPick, Lubos
By organisation
Department of Mathematics and Computer Science (from 2013)
In the same journal
Journal of Functional Analysis
Mathematical Analysis

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf