Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Turning the knobs on OpenFlow-based resiliency in mmWave small cell meshed networks
Karlstad University, Faculty of Health, Science and Technology (starting 2013), Department of Mathematics and Computer Science (from 2013). (DISCO, Datakommunikation)ORCID iD: 0000-0002-4961-5087
Tokyo Institute of Technology.
Tokyo Institute of Technology.
Tokyo Institute of Technology.
Show others and affiliations
2017 (English)In: Globecom Workshops (GC Wkshps), 2017 IEEE: 5G Testbed, IEEE, 2017Conference paper, Published paper (Refereed)
Abstract [en]

As a solution to cope with the increase of wireless network traffic for future 5G networks, the IEEE 802.11ad standard enables multi-gigabit connectivity within the 60 GHz spectrum. Since these networks typically have low range, a vast number of small cells is required to form a wireless backhaul that can be easily affected by temporary failures due to blockage/interference. Software-defined Networking (SDN) is a paradigm that allows the centralization of the control plane management, which can be applied to mmWave wireless backhaul networks. Using SDN enables the possibility of having resilience mechanisms in the network, such as Fast-Failover (FF) group tables in the OpenFlow (OF) protocol. In this paper, we analyse resilient forwarding configurations upon temporary link failures. We perform our evaluation on a 4 small cell testbed with multiple IEEE 802.11ad interfaces, showing how OF-based resiliency can be applied, through FF and the Bidirectional-Forwarding Detection (BFD) protocol. Our results show how BFD can be tuned to improve the link state monitoring, and how a local reactive failover mechanism can benefit ongoing traffic in small cell meshed backhaul networks.

Place, publisher, year, edition, pages
IEEE, 2017.
National Category
Telecommunications Software Engineering Computer Sciences
Research subject
Computer Science
Identifiers
URN: urn:nbn:se:kau:diva-65584DOI: 10.1109/GLOCOMW.2017.8269214ISBN: 978-1-5386-3920-7 (electronic)OAI: oai:DiVA.org:kau-65584DiVA, id: diva2:1176714
Conference
IEEE GLOBECOM 2017, Int. Workshop on 5G Test-Beds and Trials - Learnings from implementing 5G, 4-8 dec. 2017 Singapore.
Projects
SOCRA (4840)Available from: 2018-01-23 Created: 2018-01-23 Last updated: 2018-07-06Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Authority records BETA

Santos, RicardoKassler, Andreas

Search in DiVA

By author/editor
Santos, RicardoKassler, Andreas
By organisation
Department of Mathematics and Computer Science (from 2013)Department of Computer ScienceCentre for HumanIT
TelecommunicationsSoftware EngineeringComputer Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetric score

doi
isbn
urn-nbn
Total: 34 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf