Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Low-dimensional topology, low-dimensional field theory and representation theory
Karlstad University, Faculty of Health, Science and Technology (starting 2013), Department of Engineering and Physics (from 2013). Karlstads Univ, Teoret Fys, Univ Gatan 21, S-65188 Karlstad, Sweden..ORCID iD: 0000-0003-4081-6234
Univ Hamburg, Fachbereich Math, Algebra & Zahlentheorie, Bundesstr 55, D-20148 Hamburg, Germany..
2017 (English)In: Representation theory: Current trends and perspectives / [ed] Krause, H Littelmann, P Malle, G Neeb, KH Schweigert, C, European Mathematical Society Publishing House, 2017, p. 255-267Conference paper, Published paper (Refereed)
Abstract [en]

Structures in low-dimensional topology and low-dimensional geometry often combined with ideas from (quantum) field theory can explain and inspire concepts in algebra and in representation theory and their categorified versions. We present a personal view on some of these instances which have appeared within the Research Priority Programme SPP 1388 "Representation theory".

Place, publisher, year, edition, pages
European Mathematical Society Publishing House, 2017. p. 255-267
Series
Hamburger Beiträge zur Mathematik ; 571
Keywords [en]
Topological field theory, tensor categories, categorification
National Category
Mathematics
Identifiers
URN: urn:nbn:se:kau:diva-65475ISI: 000398985900010Archive number: 1511.02145OAI: oai:DiVA.org:kau-65475DiVA, id: diva2:1169730
Conference
Research Priority Programme SPP 1388 "Representation theory", Hamburg Universität
Available from: 2017-12-29 Created: 2017-12-29 Last updated: 2018-06-26Bibliographically approved

Open Access in DiVA

fulltext(186 kB)2 downloads
File information
File name FULLTEXT01.pdfFile size 186 kBChecksum SHA-512
6e75e08fce5bf7a05c9212e2107c47f296bc55c473ebd66962f09fd1fd2efabfdccef56e95720fcf70d82ea306faad994989d4d4b7aaf8c28c005b726bbf7e84
Type fulltextMimetype application/pdf

Other links

Fulltext

Authority records BETA

Fuchs, Jürgen

Search in DiVA

By author/editor
Fuchs, Jürgen
By organisation
Department of Engineering and Physics (from 2013)
Mathematics

Search outside of DiVA

GoogleGoogle Scholar
Total: 2 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 8 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf