Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Computation of and testing crack growth at 20 kHz load frequency
Karlstad University, Faculty of Health, Science and Technology (starting 2013), Department of Engineering and Physics.
Karlstad University, Faculty of Health, Science and Technology (starting 2013), Department of Engineering and Physics. (Materials Engineering)
Karlstad University, Faculty of Health, Science and Technology (starting 2013), Department of Engineering and Physics.
Karlstad University, Faculty of Health, Science and Technology (starting 2013), Department of Engineering and Physics.
2016 (English)In: 21ST EUROPEAN CONFERENCE ON FRACTURE, (ECF21) / [ed] F. Iacoviello, L. Susmel, D. Firrao, G. Ferro,, ELSEVIER SCIENCE BV , 2016, 1164-1172 p.Conference paper, Published paper (Refereed)
Abstract [en]

Fatigue properties are evaluated in a large span of fatigue lives ranging from a few load cycles to more than 1013 load cycles. If the interest is focused on fatigue lives above 10(7) load cycles, we speak of the very high cycle fatigue (VHCF) range. For evaluation of properties in the VHCF range one often needs to use higher load frequencies to be able to perform testing within a reasonable time. Therefore, the influence of load frequency on fatigue strength and fatigue crack growth is an important issue, both from testing and design perspectives. Within an EU-RFCS research project on the frequency influence on high strength steel fatigue properties the present study has been conducted on fatigue crack growth testing to determine threshold values and crack growth material parameters. The testing was analyzed by FE-computation to determine geometry factors for AK-determination. The testing was performed in a 20 kHz ultrasound resonance instrument. In such a system the whole load train needs to be designed to run at a resonance frequency of 20 kHz, and it implies that the specimen needs to be designed and computations performed by dynamic computational methods. As the crack grows the dynamic response of the specimen will change, and hence calculation to obtain the geometry factor is made with a progressing crack length. A uniaxial tensile load at 20 kHz frequency is applied to a single edged notched side-grooved flat specimen. The specimen dimensions are calculated in order to have a resonance frequency of 20 kHz, which is the frequency used for the experiments. Dynamic FEM computation, with a 3D-model and a quarter symmetry was used with one of the symmetry planes parallel to and in the crack growth line. To avoid crack surface interpenetration during the simulations a rigid thin sheet was introduced and used as a counter-face to the crack surface. The solution obtained was then combined with the breathing crack model proposed by Chati et. al. (1997) in order to solve for the irregularities observed when crack surface interpenetration occurs. Finally, the whole load train was considered. Thus, also the computed frequencies were very close to frequencies observed in experiments. The computation of stress intensities was made for varying crack lengths in a series of simulations. The geometry factor relation was determined and used in 20 kHz crack growth testing to control the actual stress intensity at the advancing crack tip. Comparison of computations and experimental results were made.

Place, publisher, year, edition, pages
ELSEVIER SCIENCE BV , 2016. 1164-1172 p.
Series
Procedia Structural Integrity, ISSN 2452-3216 ; 2
Keyword [en]
Crack growth, High frequency, Dynamic analysis, steel, threshold testing
National Category
Materials Engineering
Research subject
Materials Science
Identifiers
URN: urn:nbn:se:kau:diva-62609DOI: 10.1016/j.prostr.2016.06.149ISI: 000387976801029OAI: oai:DiVA.org:kau-62609DiVA: diva2:1130577
Conference
21st European Conference on Fracture (ECF), JUN 20-24, 2016, Catania, ITALY
Available from: 2017-08-10 Created: 2017-08-10 Last updated: 2017-08-10Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Sadek, MohamedBergström, JensHallback, NilsBurman, Christer
By organisation
Department of Engineering and Physics
Materials Engineering

Search outside of DiVA

GoogleGoogle Scholar

Altmetric score

Total: 1 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf