Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Fjärranalys av skogsskador efter stormen Gudrun: Skogens återhämtning efter den värsta stormen i modern tid
Karlstad University, Faculty of Health, Science and Technology (starting 2013), Department of Environmental and Life Sciences.
2017 (Swedish)Independent thesis Basic level (university diploma), 15 credits / 22,5 HE creditsStudent thesisAlternative title
Remote sensing of forest damage after the storm Gudrun : The recovery of the forest since the worst storm in modern time (English)
Abstract [sv]

Den 8:e januari 2005 inträffade en av de mest förödande stormarna i Sveriges historia då hundratusentals blev strömlösa och sju personer miste livet. Stormen Gudrun drabbade centrala Götaland värst och uppemot nio årsavverkningar skog beräknas ha fällts i vissa områden. Tidigare studier av stormen har genomförts på uppdrag av Skogsstyrelsen där resultaten visar att andel stormfälld skogsmarksareal var 11 % i värst drabbade Ljungby kommun, och ca 80 % av all den stormfällda skogen var gran, 18 % var tall och 2 % var löv.

Syftet med arbetet är att undersöka mängden stormfälld skog efter stormen Gudrun genom analys av satellitburen fjärranalysdata. Även andelen stormfälld barr- och lövskog beräknades och resultaten jämfördes med de rapporter skrivna för Skogsstyrelsen. Även andelen stormfälld skog som är återbeskogad år 2016 beräknades. En förändringsanalys med satellitbilder från Landsat 5, tagna åren 2004 och 2005, genomfördes vilken inkluderade en skogsmask som skapades genom övervakad MLC-klassificering. Skogsmasken användes för att utesluta ointressanta områden i analyserna. Resultatet användes sedan för analys av andelen stormfälld barr- och lövskog samt för analys av återbeskogade områden år 2016. I den sistnämnda skapades en skogsmask med en satellitbild från Landsat 8 och som sedan användes i analysen.

Resultaten från analyserna visar att ca 15,8 % av skogen stormfälldes, varav 78 % var barrskog och 13 % var lövskog. År 2016 hade ca 25 % av de stormfällda områdena återbeskogats. Noggrannheten på resultaten är generellt höga men skiljer sig trots detta väsentligt från resultaten i studierna som gjorts för Skogsstyrelsen. Anledningen till att resultaten skiljer sig åt kan bero på vilka satellitbilder och program som använts i analyserna, samt felkällor som uppkommit i samband med analyserna i denna studie.

Abstract [en]

On January 8th, 2005 one of the most devastating storms in Sweden’s history occurred, where hundreds of thousands became powerless and seven people lost their lives. The storm Gudrun hit central Götaland worst and nearly nine years’ professional felling of forests was estimated to have fallen in some areas. Previous studies of the storm were carried out on behalf of the Swedish Forest Agency, where the results show that the proportion of windthrown forest area was 11 % in the worst affected municipality of Ljungby. About 80 % of all damaged forests were spruce, 18 % were pine and 2 % were deciduous.                       

The aim of this thesis is to investigate the amount of windthrown forest after the storm Gudrun through analysis of satellite remote sensing data. The proportion of windthrown coniferous and deciduous forest was calculated and the results were compared to the reports written on behalf of the Swedish Forest Agency. Furthermore, the proportion of reforested areas in 2016 was calculated. A change analysis based on satellite data from Landsat 5 from 2004 and 2005 was performed which included a forest mask created by supervised MLC classification. The forest mask was used to exclude uninteresting areas in the analyses. The result was then used for the analysis of the proportion of windthrown coniferous and deciduous forest and for the analysis of reforested areas in 2016. In the latter, a forest mask based on Landsat 8 data was used.

The results from the analyses show that about 15.8 % of the forest was windthrown, of which 78 % were coniferous and 13 % were deciduous forest. By 2016, 25% of the windthrown areas had been reforested. The accuracy of the results is generally high, but despite this, it substantially differs from the results of earlier studies. The reason for this could be differences in satellite images and programs and additional error sources in conjunction with the analyses.

Place, publisher, year, edition, pages
2017. , p. 30
Keywords [en]
image differencing, change detection, Gudrun, Landsat, forest, storm damage
Keywords [sv]
förändringsanalys, Gudrun, Landsat, MLC, skog, stormskador
National Category
Remote Sensing
Identifiers
URN: urn:nbn:se:kau:diva-55089OAI: oai:DiVA.org:kau-55089DiVA, id: diva2:1110643
Educational program
Engineering: Surveying Technology and Geographical IT, 180 hp
Supervisors
Examiners
Available from: 2017-09-07 Created: 2017-06-16 Last updated: 2017-09-07Bibliographically approved

Open Access in DiVA

fulltext(2298 kB)110 downloads
File information
File name FULLTEXT01.pdfFile size 2298 kBChecksum SHA-512
274b8c93b84d845ddcfcbb065a26897178253eddd5ca2ff3d28e7430784a4f24e98231df413b0a63831f9c90d843e1864df0985f22975f5083454a36310d1263
Type fulltextMimetype application/pdf

By organisation
Department of Environmental and Life Sciences
Remote Sensing

Search outside of DiVA

GoogleGoogle Scholar
Total: 110 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 403 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf