Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Andragradsytor i rymden
2003 (Swedish)Independent thesis Advanced level (degree of Master (One Year))Student thesis
Abstract [en]

In this thesis we are studying the surfaces in the Euclidean 3-space R2 described by the polynomial of second degree of the form: F(x,y,z)= a11x2 +2a12xy +2a13xz +a22y2 +2a23yz +a33z2 +b1x +b2y +b3z +c We give the proof of a classical theorem stating that there exist exactly 9 different surfaces described by this kind of equations: Ellipsoid, Elliptic Paraboloid, Hyperbolic Paraboloid, Elliptic Cylinder, Hyperbolic Cylinder, Parabolic Cylinder, Elliptic Hyperboloid of two Sheets, Elliptic Cone, Elliptic Hyperboloid of one Sheet Keywords Second-degree curves, Second-degree surfaces, Orthogonal diagonalization, ON-matrix

Place, publisher, year, edition, pages
2003. , 52 p.
Identifiers
URN: urn:nbn:se:kau:diva-54808Local ID: MAT D-2OAI: oai:DiVA.org:kau-54808DiVA: diva2:1104572
Subject / course
Mathematics
Available from: 2017-06-01 Created: 2017-06-01

Open Access in DiVA

No full text

Search outside of DiVA

GoogleGoogle Scholar

CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf