Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • apa.csl
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Study of using a capillary tube in a heat pump dishwasher with transient heating
ASKO Appliances AB, Sockerbruksgatan 3, SE-53140 Lidkoping, Sweden.ORCID iD: 0000-0002-5101-3800
Karlstad University, Faculty of Health, Science and Technology (starting 2013), Department of Engineering and Chemical Sciences (from 2013).ORCID iD: 0000-0002-9707-8896
2016 (English)In: International journal of refrigeration, ISSN 0140-7007, E-ISSN 1879-2081, Vol. 67, p. 1-9Article in journal (Refereed) Published
Resource type
Text
Abstract [en]

For competitive purposes, manufacturers of household appliances need to produce appliances that use less electricity. One way of doing this for a dishwasher is to add a heat pump system. Previous studies using R134a as refrigerant have shown that the addition of a heat pump can reduce total electricity consumption by about 24%. This paper reports on the use of a capillary tube in a heat pump dishwasher during the transient heating period. Working with an available compressor, the mass of R600a and the length of a 0.9 mm capillary tube were varied in order to find the configuration with the lowest electricity consumption. Three methods of calculating the length of the capillary tube were used to determine five lengths for evaluation. The results show that using a single capillary tube throughout the transient heating period yields similar electricity consumption to a variable expansion device which occurred by switching the capillary tube between two or three different lengths during the heating period.

Place, publisher, year, edition, pages
Elsevier, 2016. Vol. 67, p. 1-9
Keywords [en]
Home appliances, Expansion device, Environmental impact, Natural refrigerant, Energy use
National Category
Energy Systems
Research subject
Energy Technology
Identifiers
URN: urn:nbn:se:kau:diva-44653DOI: 10.1016/j.ijrefrig.2016.04.006ISI: 000378951900002OAI: oai:DiVA.org:kau-44653DiVA, id: diva2:952142
Available from: 2016-08-11 Created: 2016-08-11 Last updated: 2019-10-21Bibliographically approved
In thesis
1. Apply heat pump systems in commercial household products to reduce environmental impact: How to halve the electricity consumption for a household dishwasher
Open this publication in new window or tab >>Apply heat pump systems in commercial household products to reduce environmental impact: How to halve the electricity consumption for a household dishwasher
2017 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

In the household appliance industry, heat pump systems have been used for a long time in refrigerators and freezers to cool food, and the industry has driven the development of small, high-quality, low-price heat pump components. In the last few decades, heat pump systems have been introduced in other household appliances, with the express purpose of reducing electricity consumption. Heat pump tumble dryers have been on the market since 2000 and dominate the market today. A heat pump dishwasher was introduced on the market in 2014 and a heat pump washing machine in 2016. The purpose of adding a heat pump system in these three products was to decrease electricity consumption.

Papers I and II used a methodology where transient simulation models were developed and used to increase knowledge about how to decrease electricity consumption for a tumble dryer and a dishwasher by adding a heat pump system. Papers II to V showed that a lower electricity consumption and lower global warming potential together with an energy-efficient drying method, where no humid air evacuates to the kitchen, give a heat pump dishwasher competitive advantages compared to any conventional dishwasher currently on the market. Using simulations, this dissertation concludes that a future commercial heat pump dishwasher, using R600a as a refrigerant, will reduce electricity consumption and total equivalent warming impact (TEWI) by 50% compared to the conventional dishwasher.

The willingness from the customer chain to pay extra for this heat pump dishwasher is because of the decreases electricity consumption and the fact that no humid air evacuates to the kitchen. This willingness makes the heat pump dishwasher to a variant which have possibility to succeed on the future market.

The challenge for the manufacturer is to develop and produce a high-quality heat pump dishwasher with low electricity consumption, predict future willingness to pay for it, and launch it on the market at the right moment with the right promotion in order to succeed.

Abstract [en]

The competition in the household appliances industry is strong. Manufacturers are continuously trying to develop, produce and sell product functions and features with good profit. To continually develop new features that the customer chain is willing to pay for is a key factor for a manufacturer to survive.

In this study has a heat pump system been added as a new feature to a dishwasher. The first heat pump dishwasher was introduced on the market in 2014 and the heat pump system was only used to heat the dishwasher. Comparing that first heat pump dishwasher was a new closed drying method introduced in this study where no humid air evacuates to the kitchen. Experiments and simulations showed that a dishwasher with an added heat pump system can decrease the total electricity consumption by 50% when cleaning and drying the dishware comparing to an on market conventional dishwasher.

The willingness from the customer chain to pay extra for this heat pump dishwasher is because of the decreases in electricity consumption and the fact that no humid air evacuates to the kitchen. This willingness makes the heat pump dishwasher to a variant which have possibility to succeed on the future market.

Place, publisher, year, edition, pages
Karlstads universitet, 2017
Series
Karlstad University Studies, ISSN 1403-8099 ; 2017:10
Keywords
household appliance, electricity consumption, heat pump, environmental impact
National Category
Energy Engineering
Research subject
Environmental and Energy Systems
Identifiers
urn:nbn:se:kau:diva-48132 (URN)978-91-7063-759-9 (ISBN)978-91-7063-760-5 (ISBN)
Public defence
2017-05-05, 9C203, Nyquistsalen, Karlstad, 09:15 (Swedish)
Opponent
Supervisors
Available from: 2017-04-13 Created: 2017-03-13 Last updated: 2019-10-21Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Authority records

Bengtsson, PederBerghel, Jonas

Search in DiVA

By author/editor
Bengtsson, PederBerghel, Jonas
By organisation
Department of Engineering and Chemical Sciences (from 2013)
In the same journal
International journal of refrigeration
Energy Systems

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 413 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • apa.csl
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf