Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Guaranteed Estimates of Linear Continuous Functionals of Solutions and Right-hand Sides of the Helmholtz Equation in the Domains with Infinite Boundaries under Uncertainties
Kiev Natl Univ, Kiev, Ukraine..
Karlstads universitet, Fakulteten för hälsa, natur- och teknikvetenskap (from 2013), Institutionen för matematik och datavetenskap (from 2013).ORCID-id: 0000-0002-2691-2820
2013 (Engelska)Ingår i: PIERS 2013 STOCKHOLM: PROGRESS IN ELECTROMAGNETICS RESEARCH SYMPOSIUM, 2013, s. 65-69Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

We consider the construction of guaranteed estimates of linear continuous function als of the unknown solutions and right-hand sides of the Helmholtz equation; the boundary value problems under study are associated with the wave diffraction by a bounded body D situated in a domain Omega is an element of R-n, n = 2, 3, whose boundary partial derivative Omega stretches to infinity (e.g., a wedge or a layer) and Green's function Phi(k) (x, y), (x, y is an element of Omega, x not equal y) corresponding to wave number k with k > 0 and boundary condition (I)k (x, y)vertical bar y is an element of Omega = 0 is known [4]. Here, for a function u(y) defined in (Omega) over bar Bu(y)vertical bar(y is an element of partial derivative Omega) + beta partial derivative u(y)/partial derivative y vertical bar(y is an element of partial derivative Q), alpha, beta = 0, 1, alpha + beta = 1, v is outward normal to aft We assume that right-hand sides of the equations entering the problem statement are not known; the only available information is that they belong to a bounded set of the space of square-integrable functions. In order to solve these estimation problems we need additional data: observations in the form of certain linear transformations of the solution distorted by noise. The latter are realizations of the random fields with the unknown second moment functions belonging to a given bounded set in the appropriate functional space. The approach set forth in and developed in this study allows us to obtain optimal estimates of the unknown solution or righthand sides of the equations and linear functionals, i.e., estimates sought in the class of functionals linear with respect to observations for which the maximal mean-square estimation error taken over all elements belonging to the aforementioned sets takes minimal value. Such estimates are called minimax or guaranteed estimates. We obtain representations for these estimates and estimation errors in terms of solutions to certain integro-differential or integral equations in bounded subdomains of domain Omega \ D.

Ort, förlag, år, upplaga, sidor
2013. s. 65-69
Serie
Progress in Electromagnetics Research Symposium, ISSN 1559-9450
Nationell ämneskategori
Annan matematik
Forskningsämne
Matematik; Matematik
Identifikatorer
URN: urn:nbn:se:kau:diva-38684ISI: 000361384200010ISBN: 978-1-934142-26-4 (tryckt)OAI: oai:DiVA.org:kau-38684DiVA, id: diva2:873348
Konferens
Progress In Electromagnetics Research Symposium, AUG 12-15, 2013, Stockholm, SWEDEN
Tillgänglig från: 2015-11-23 Skapad: 2015-11-23 Senast uppdaterad: 2019-12-02Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Personposter BETA

Shestopalov, Youri

Sök vidare i DiVA

Av författaren/redaktören
Shestopalov, Youri
Av organisationen
Institutionen för matematik och datavetenskap (from 2013)
Annan matematik

Sök vidare utanför DiVA

GoogleGoogle Scholar

isbn
urn-nbn

Altmetricpoäng

isbn
urn-nbn
Totalt: 43 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf