Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Vertical and lateral morphology effects on solar cell performance for a thiophene–quinoxaline copolymer:PC70BM blend
Karlstads universitet, Fakulteten för hälsa, natur- och teknikvetenskap (from 2013), Institutionen för ingenjörsvetenskap och fysik. (INTERACT)ORCID-id: 0000-0002-4745-1074
Karlstads universitet, Fakulteten för hälsa, natur- och teknikvetenskap (from 2013), Institutionen för ingenjörsvetenskap och fysik. (INTERACT)
Centre for Organic Electronics, University of Newcastle, Callaghan, NSW 2308, Australia.
M. Smoluchowski Insitute of Physics, Jagiellonian University, Reymonta 4, Krakow 30–059, Poland.
Visa övriga samt affilieringar
2015 (Engelska)Ingår i: Journal of Materials Chemistry A, ISSN 2050-7488, Vol. 3, s. 6970-6979Artikel i tidskrift (Refereegranskat) Published
Ort, förlag, år, upplaga, sidor
2015. Vol. 3, s. 6970-6979
Nyckelord [en]
NEXAFS, SIMS, solar cell, organic photovoltaics, solvent additives
Nationell ämneskategori
Den kondenserade materiens fysik
Forskningsämne
Fysik; Materialvetenskap
Identifikatorer
URN: urn:nbn:se:kau:diva-35418DOI: 10.1039/c5ta00683jISI: 000351552300034OAI: oai:DiVA.org:kau-35418DiVA, id: diva2:797049
Forskningsfinansiär
Vetenskapsrådet, 2010-4155Göran Gustafssons stiftelse för naturvetenskaplig och medicinsk forskning (KVA)Tillgänglig från: 2015-03-22 Skapad: 2015-03-22 Senast uppdaterad: 2018-06-20Bibliografiskt granskad
Ingår i avhandling
1. Morphology and material stability in polymer solar cells
Öppna denna publikation i ny flik eller fönster >>Morphology and material stability in polymer solar cells
2015 (Engelska)Licentiatavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

Polymer solar cells are promising in that they are inexpensive to produce, and due to their mechanical flexibility have the potential for use in applications not possible for more traditional types of solar cells. The performance of polymer solar cells depends strongly on the distribution of electron donor and acceptor material in the active layer. Understanding the connection between morphology and performance as well as how to control the morphology, is therefore of great importance. Furthermore, improving the lifetime of polymer solar cells has become at least as important as improving the efficiency.

 

In this thesis, the relation between morphology and solar cell performance is studied, and the material stability for blend films of the thiophene-quinoxaline copolymer TQ1 and the fullerene derivatives PCBM and PC70BM. Atomic force microscopy (AFM) and scanning transmission X-ray microscopy (STXM) are used to investigate the lateral morphology, secondary ion mass spectrometry (SIMS) to measure the vertical morphology and near-edge X-ray absorption fine structure (NEXAFS) spectroscopy to determine the surface composition. Lateral phase-separated domains are observed whose size is correlated to the solar cell performance, while the observed TQ1 surface enrichment does not affect the performance. Changes to the unoccupied molecular orbitals as a result of illumination in ambient air are observed by NEXAFS spectroscopy for PCBM, but not for TQ1. The NEXAFS spectrum of PCBM in a blend with TQ1 changes more than that of pristine PCBM. Solar cells in which the active layer has been illuminated in air prior to the deposition of the top electrode exhibit greatly reduced electrical performance. The valence band and absorption spectrum of TQ1 is affected by illumination in air, but the effects are not large enough to account for losses in solar cell performance, which are mainly attributed to PCBM degradation at the active layer surface.

Abstract [en]

The performance of polymer solar cells depends strongly on the distribution of electron donor and acceptor material in the active layer. Understanding the connection between morphology and performance as well as how to control the morphology, is therefore of great importance. Furthermore, improving the lifetime has become at least as important as improving the efficiency for polymer solar cells to become a viable technology.

 

In this work, the relation between morphology and solar cell performance is studied as well as the material stability for polymer:fullerene blend films. A combination of microscopic and spectroscopic methods is used to investigate the lateral and vertical morphology as well as the surface composition. Lateral phase-separated domains are observed whose size is correlated to the solar cell performance, while the observed surface enrichment of polymer does not affect the performance. Changes to the unoccupied molecular states as a result of illumination in ambient air are observed for the fullerene, but not for the polymer, and fullerenes in a blend change more than pristine fullerenes. Solar cells in which the active layer has been illuminated exhibit greatly reduced electrical performance, mainly attributed to fullerene degradation at the active layer surface.

Ort, förlag, år, upplaga, sidor
Karlstad: Karlstads universitet, 2015. s. 51
Serie
Karlstad University Studies, ISSN 1403-8099 ; 2015:44
Nyckelord
polymer solar cell, photovoltaics, morphology, photo-degradation, conjugated polymer, fullerene, synchroton-based techniques
Nationell ämneskategori
Fysik
Forskningsämne
Fysik
Identifikatorer
urn:nbn:se:kau:diva-37843 (URN)978-91-7063-662-2 (ISBN)
Presentation
2015-10-16, Eva Erikssonsalen, 21A 342, Karlstad universitet, 10:15 (Engelska)
Opponent
Handledare
Anmärkning

Paper 2 ingick som manuskript i avhandlingen. Nu publicerad. 

Tillgänglig från: 2015-09-25 Skapad: 2015-09-04 Senast uppdaterad: 2018-06-20Bibliografiskt granskad
2. Materials and Device Engineering for Efficient and Stable Polymer Solar Cells
Öppna denna publikation i ny flik eller fönster >>Materials and Device Engineering for Efficient and Stable Polymer Solar Cells
2017 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

Polymer solar cells form a promising technology for converting sunlight into electricity, and have reached record efficiencies over 10% and lifetimes of several years. The performance of polymer solar cells depends strongly on the distribution of electron donor and acceptor materials in the active layer. To achieve longer lifetimes, degradation processes in the materials have to be understood. In this thesis, a set of complementary spectroscopy and microscopy techniques, among which soft X-ray techniques have been used to determine the morphology of polymer:fullerene based active layers. We have found that the morphology of TQ1:PC70BM films is strongly influenced by the processing solvent and the use of solvent additives. We have also found, by using soft X-ray techniques, that not only the light-absorbing polymer TQ1, but also the fullerene is susceptible to photo-degradation in air. Moreover, the fullerene degradation is accelerated in the presence of the polymer. Additionally, this thesis addresses the role of the interfacial layers for device performance and stability. The commonly used hole transport material PEDOT:PSS has the advantage of being solution processable at room temperature, but this layer is also known to contribute to the device degradation. We have found that low-temperature processed NiOx is a promising alternative to PEDOT:PSS, leading to improved device performance. Even for encapsulated polymer solar cells, some photo-induced degradation of the electrical performance is observed and is found to depend on the nature of the hole transport material. We found a better initial stability for solar cells with MoO3 hole transport layers than with PEDOT:PSS. In the pursuit of understanding the initial decrease in electrical performance of PEDOT:PSS-based devices, simulations were performed, from which a number of degradation sources could be excluded.

Abstract [en]

With the increasing global demand for energy, solar cells provide a clean method for converting the abundant sunlight to electricity. Polymer solar cells can be made from a large variety of light-harvesting and electrically conducting molecules and are inexpensive to produce. They have additional advantages, like their mechanical flexibility and low weight, which opens opportunities for novel applications. In order for polymer solar cells to be more competitive, however, both the power conversion efficiencies and lifetimes need to further improve. One way to achieve this is to optimize the morphology of the active layer. The active layer of a polymer solar cell consists of electron donating and electron accepting molecules whose distribution in the bulk of the film is a major factor that determines the solar cell performance.

This thesis presents the use of complementary spectroscopy and microscopy methods to probe the local composition in the active layer of polymer solar cells. The stability of the active layer is studied and the interplay between the photo-degradation of the donor and acceptor molecules is investigated. Additionally, this thesis addresses how the interfacial layers between the active layer and the electrodes can influence device performance and stability.

Ort, förlag, år, upplaga, sidor
Karlstad: Karlstads universitet, 2017. s. 75
Serie
Karlstad University Studies, ISSN 1403-8099 ; 2017:2
Nyckelord
polymer solar cell, photovoltaics, morphology, photo-degradation, conjugated polymer, fullerene, synchroton-based techniques, hole transport layers
Nationell ämneskategori
Fysik
Forskningsämne
Fysik
Identifikatorer
urn:nbn:se:kau:diva-47257 (URN)978-91-7063-736-0 (ISBN)978-91-7063-739-1 (ISBN)
Disputation
2017-02-03, 21A342, Karlstads universitet, Karlstad, 13:15 (Engelska)
Opponent
Handledare
Anmärkning

I publikationen felaktigt ISBN 978-91-7063-739-1

Artikel 5 publicerad i avhandlingen som manuskript med titeln "The role of the hole transport layer in the initial photo-degradation of PCDTBT: PC70BM solar cells"

Tillgänglig från: 2017-01-13 Skapad: 2016-11-23 Senast uppdaterad: 2019-04-05Bibliografiskt granskad

Open Access i DiVA

Main article(11051 kB)76 nedladdningar
Filinformation
Filnamn FULLTEXT03.pdfFilstorlek 11051 kBChecksumma SHA-512
69828eb65734da41c847fe4f204f70812cbaf1abd0b1b5fb26c60acf5b3ca5e37fbaf9062b5b3c61d5319aba8f79c27f92d2a72c38d255d10750e20d5ccb1bb5
Typ fulltextMimetyp application/pdf
Supplementary information(269 kB)15 nedladdningar
Filinformation
Filnamn FULLTEXT04.pdfFilstorlek 269 kBChecksumma SHA-512
c689dbeea9fbb624b64dfb1ae1c552a063a9c955f361396af32e00c70c5b3ded99d5cd2670bec89c4efab06596cac547c4fe188963f055af427547b9e2a38879
Typ fulltextMimetyp application/pdf

Övriga länkar

Förlagets fulltexthttp://pubs.rsc.org/en/content/articlepdf/2015/ta/c5ta00683j

Personposter BETA

Hansson, RickardEricsson, Leif K.E.Dastoor, PaulMoons, Ellen

Sök vidare i DiVA

Av författaren/redaktören
Hansson, RickardEricsson, Leif K.E.Dastoor, PaulMoons, Ellen
Av organisationen
Institutionen för ingenjörsvetenskap och fysik
I samma tidskrift
Journal of Materials Chemistry A
Den kondenserade materiens fysik

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 91 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 420 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf