Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Variation of dislocation etch-pit geometry: An indicator of bulk microstructure and recombination activity in multicrystalline silicon
Massachusetts Institute of Technology, Massachusetts, USA.
Massachusetts Institute of Technology, Massachusetts, USA.
Massachusetts Institute of Technology, Massachusetts, USA.
Karlstads universitet, Fakulteten för hälsa, natur- och teknikvetenskap (from 2013), Institutionen för ingenjörsvetenskap och fysik (from 2013).ORCID-id: 0000-0003-2181-3820
Vise andre og tillknytning
2014 (engelsk)Inngår i: Journal of Applied Physics, ISSN 0021-8979, E-ISSN 1089-7550, Vol. 115, nr 18, s. 1-7, artikkel-id 183511Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Dislocation clusters in multicrystalline silicon limit solar cell performance by decreasing minoritycarrier diffusion length. Studies have shown that the recombination strength of dislocation clusterscan vary by up to two orders of magnitude, even within the same wafer. In this contribution, wecombine a surface-analysis approach with bulk characterization techniques to explore theunderlying root cause of variations in recombination strength among different clusters. We observethat dislocation clusters with higher recombination strength consist of dislocations with a largervariation of line vector, correlated with a higher degree of variation in dislocation etch-pit shapes(ellipticities). Conversely, dislocation clusters exhibiting the lowest recombination strength containmostly dislocations with identical line vectors, resulting in very similar etch-pit shapes. Thedisorder of dislocation line vector in high-recombination clusters appears to be correlated withimpurity decoration, possibly the cause of the enhanced recombination activity. Based on ourobservations, we conclude that the relative recombination activity of different dislocation clustersin the device may be predicted via an optical inspection of the distribution and shape variation ofdislocation etch pits in the as-grown wafer.

sted, utgiver, år, opplag, sider
American Institute of Physics (AIP), 2014. Vol. 115, nr 18, s. 1-7, artikkel-id 183511
Emneord [en]
etching, dislocations, solar cell, TEM, µ-XRF, silicon, copper
HSV kategori
Forskningsprogram
Fysik
Identifikatorer
URN: urn:nbn:se:kau:diva-33996DOI: 10.1063/1.4876445ISI: 000336919400015Scopus ID: 2-s2.0-84901483994OAI: oai:DiVA.org:kau-33996DiVA, id: diva2:752464
Tilgjengelig fra: 2014-10-03 Laget: 2014-10-03 Sist oppdatert: 2019-08-14bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Personposter BETA

Rinio, Markus

Søk i DiVA

Av forfatter/redaktør
Rinio, Markus
Av organisasjonen
I samme tidsskrift
Journal of Applied Physics

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 291 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf